news 2026/2/15 6:42:40

基于LSTM与集成学习融合的光伏发电功率预测系统设计与实现(MATLAB实现)

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
基于LSTM与集成学习融合的光伏发电功率预测系统设计与实现(MATLAB实现)

摘要:随着光伏发电在电力系统中的占比不断提高,准确的功率预测对电网调度与能源管理具有重要意义。本文设计并实现了一套基于 MATLAB 的光伏发电功率短期预测系统,采用深度学习与集成学习融合的建模思路提升预测精度与稳定性。

作者:Bob(原创)

项目概述

随着光伏发电在电力系统中的占比不断提高,准确的功率预测对电网调度与能源管理具有重要意义。本文设计并实现了一套基于 MATLAB 的光伏发电功率短期预测系统,采用深度学习与集成学习融合的建模思路提升预测精度与稳定性。

系统以长短期记忆网络(LSTM)提取光伏功率序列的时序特征,并引入集成学习模型(梯度提升决策树 GBDT、随机森林 RF)挖掘气象因素与功率之间的非线性关系。在融合层面,本文实现并对比了三种融合策略:Ridge Stacking、Lasso Stacking 以及基于验证集 R² 的加权融合。系统包含数据预处理、模型训练、融合预测与结果可视化等完整功能模块,能够支持逐小时滚动预测与结果输出。

实验采用某地区全年 8760 小时光伏数据,包含太阳辐照度、温度、风速、湿度与云量等 5 个气象特征。结果表明,LSTM+RF+Lasso 的 Stacking 融合方案取得最优综合性能,在测试集上达到 R²=0.9890、RMSE=1.56 kW、MAE=1.01 kW,相比单一 LSTM 模型预测精度提升约 9%。本文系统具有预测精度高、运行稳定、易于部署等特点,可为光伏电站功率预测与电网调度提供实用支持。

系统设计

系统采用“数据预处理 → LSTM时序预测与集成学习预测并行建模 → Stacking/加权融合输出最终功率预测 → 指标评估与可视化对比”的流程,实现光伏发电功率的短期预测与方案优选。

图1 系统整体流程图

硬件配置

该系统硬件配置如上,如果您的电脑配置低于下述规格,运行速度可能会与本系统的存在差异,请注意。

表1 惠普(HP)暗影精灵10台式整机配置(系统硬件配置)

软件环境

对本实验所需的各类软件及工具的基本信息进行了清晰汇总。

表2 系统软件配置(真实运行环境)

运行展示

运行quick_start.m

图2 三种组合方案综合性能对比

对比了三种融合方案在测试集上的综合预测性能,指标包括RMSE、MAE、R²以及SMAPE。结果显示,组合二(LSTM+随机森林+Lasso Stacking)在RMSE与MAE上最优,同时R²保持最高水平,综合评分排名第一。组合三(R²加权融合)在R²表现接近组合二,但误差指标略高;组合一(Ridge Stacking)整体性能相对较弱。该图用于直观展示不同融合策略在精度与稳定性上的差异。

图3 组合一预测效果与误差分析

展示了组合一(LSTM+GBDT(LSBoost)+Ridge Stacking)在测试集上的预测结果,包括真实值与各模型预测曲线对比、预测散点分布及误差直方图。散点图显示预测值与真实值总体呈线性一致,但在高功率段存在一定离散现象。误差分布以0附近为中心,表明整体偏差较小,但尾部仍存在少量较大误差。该结果说明Ridge Stacking能够提升稳定性,但融合增益有限。

图4 组合二预测效果与误差分析

给出了组合二(LSTM+随机森林(Bagging)+Lasso Stacking)的测试集预测表现。与其他方案相比,该组合在预测曲线与真实值的贴合程度更高,散点分布更集中于理想对角线附近,说明拟合一致性更强。误差直方图呈现更尖峰的集中分布,体现出更好的误差收敛特性。综合来看,该方案在精度与泛化性之间取得了最佳平衡。

图5 组合三预测效果与误差分析

展示了组合三(LSTM+GBDT+R²加权融合)的预测效果及两模型权重分配结果。该方法依据验证集R²计算融合权重,实现无需训练元学习器的自适应集成。结果表明两模型权重接近均分,说明LSTM的时序建模能力与GBDT的非线性拟合能力均对预测贡献显著。该方案R²表现较高,但误差指标略逊于Lasso Stacking方案。

图6 光伏功率数据预处理与数据集划分结果

展示了原始光伏功率时间序列、功率分布统计以及训练/验证/测试集划分情况。可见功率数据存在大量接近0的样本(夜间无发电时段),导致分布呈现明显偏态,这也是采用SMAPE等稳健指标的原因之一。数据集按时间顺序划分为训练集、验证集与测试集,以避免信息泄露并更贴近实际预测场景。该图用于说明数据特征与实验设置的合理性。

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/2/14 23:23:47

Multi-Agent系统从入门到精通:架构设计、LangGraph实现与生产级部署全流程

文章详解了Multi-Agent系统的架构设计与LangGraph实现方法,包括科学拆分Agent的原则、状态共享机制、技术选型考量,以及基于LangGraph的客服系统实现步骤。提供了从Demo到生产系统的工程化关键点、避坑指南和决策者行动清单。强调架构设计比技术选型更重…

作者头像 李华
网站建设 2026/2/3 16:30:38

Nodejs和vue框架的个人健康菜谱生成系统_ 项目源码

文章目录项目概述技术架构核心功能算法逻辑代码结构部署与扩展--nodejs技术栈--结论源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!项目概述 该项目基于Node.js与Vue.js构建了一个智能化的个人健康菜谱生成系统。后端采用Node.js的Exp…

作者头像 李华
网站建设 2026/2/10 18:53:36

Nodejs和vue框架的林业资源开发管理系统设计与实现_-- 项目源码

文章目录林业资源开发管理系统设计与实现(Node.js Vue)技术架构核心功能创新点应用价值--nodejs技术栈--结论源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!林业资源开发管理系统设计与实现(Node.js…

作者头像 李华
网站建设 2026/2/13 20:24:37

计算机毕业设计springboot作物叶片病害诊断系统 基于SpringBoot的农作物叶部病害智能识别与防治平台 SpringBoot+MySQL实现田间作物叶片病害在线诊断与知识共享系统

计算机毕业设计springboot作物叶片病害诊断系统mhjpa8en(配套有源码 程序 mysql数据库 论文) 本套源码可以在文本联xi,先看具体系统功能演示视频领取,可分享源码参考。当全球粮食需求持续攀升,叶片病害却总在关键时刻偷走产量。把…

作者头像 李华