news 2025/12/21 22:50:44

Matlab|基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
Matlab|基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文内容如下:🎁🎁🎁

⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥第一部分——内容介绍

1 光伏特性


光伏电池特性是非线性的,其输出功率随辐照度和温度的变化而变化。非线性的原因是,光照照度和温度的值全天变化,从而降低了输出效率。此外,这些光伏组件的效率并不能满足电力需求。因此,需要设计一种提高光伏组件效率的算法,以解决电池效率与功率需求之间的差异。因此,本文目标是设计和建立相关模型,然后基于粒子群优化算法及辅助 MPPT 算法并提高光伏系统的效率。

2 动机

目前,大部分路灯都是通过常规能源供电。但是,日益增长的需求与可利用的资源之间存在巨大的差距。因此,对可再生能源,即太阳能路灯的需求增加。
太阳能供电装置最好适用于再生资源稀缺的地方。这些太阳能供电装置的初始成本较多。因此,需要集成鲁棒MPPT控制器。最大功率点跟踪( MPPT )由从光伏发电机中提取最大功率组成。有了MPPT,更多的器件可以用更少的电能供电。

3 基于粒子群优化的MPPT算法


步骤1 (参数选择):在所提出的系统中,粒子位置定义为DC-dc变换器的占空比值d,适应度值评价函数选择为所产生的功率P。从算法的角度来看,即使在复杂的阴影模式下,粒子数目越多,MPP跟踪越精确。然而,更多的粒子也会导致更长的计算时间。因此,应进行权衡,以保证良好的跟踪速度和精度。

步骤2 ( PSO初始化):在PSO初始化阶段,粒子可以放在固定的位置上,也可以放在空间中,随机进行。基本上,如果有关于Global _ MPP在搜索空间中位置的信息,那么初始化它周围的粒子就更有意义。本文将粒子初始化在复盖等距离搜索空间[Dmin , Dmax]的固定位置上。

步骤3(适应度评估):提出的 MPPT 算法的目标是最大化生成的功率 PPV。数字控制器输出后,根据粒子i的位置的PWM命令(代表占空比命令),可以测量VPV和当前IPV,然后利用这些值计算粒子i的适应值PPV。应该注意的是,为了获得正确的样本,连续粒子评估之间的时间间隔必须大于电源转换器的稳定时间。

步骤 4(更新个体和全局最佳数据):如果粒子 i 的适应度值优于历史上的最佳适应度值 p_(best,i),则将当前值设置为新的 p_(best,i)。然后,选择所有粒子中适应度值最好的粒子作为g_best。此步骤类似于标准 PSO 方法的步骤 3。

步骤 5(更新每个粒子的速度和位置):在评估所有粒子之后,应该更新群体中每个粒子的速度和位置。
步骤6(收敛确定):本文使用了两个收敛标准。如果所有粒子的速度都小于阈值,或者达到最大迭代次数,则提出的 MPPT 算法将停止并输出获得的 g_best 解。

步骤7 (重新初始化):典型地,PSO方法用于求解最优解为时不变的问题。但是,在这个应用程序中,适应值( 全球最大可用功率 )经常会随着环境和加载条件而变化。在这种情况下,必须重新初始化粒子以再次搜索新的GMPP。以下约束用于检测阴凉变化和遮阳模式变化。

4 结论

本文的目的是提高光伏组件的效率。光伏电池特性是非线性的,输出功率随辐照度和温度的变化而变化。一个DC-DC Boost变换器,它将16 ~ 21v的太阳能电池板输出的电压升压到为器件供电所需的电压。然后设计了一种DC-DC Boost变换器以提高输出电压,找到合适的电感和电容值。为了验证电路的稳定性,对DC-DC Boost变换器进行了建模。

采用粒子群优化( PSO )辅助MPPT算法,提高了光伏模块的效率。实现了粒子群优化技术,并演示了输出功率的增加。该方法是针对不同的大气条件进行测试的。研究发现,即使在部分遮阴和大气变化的条件下,PSO方法也能快速准确地跟踪MPP。

📚第二部分——运行结果

🎉第三部分——参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈第四部分——本文完整资源下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python|数据|文档等完整资源获取

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2025/12/21 20:18:56

Vite 项目中 `node_modules/.vite/deps` 文件夹详解

在使用 Vite 构建的项目中,你可能会注意到一个特殊的隐藏文件夹: node_modules/.vite/deps/这个目录是 Vite 的依赖预构建(Dependency Pre-Bundling)机制的核心产物。它对开发服务器的启动速度、HMR(热更新&#xff09…

作者头像 李华
网站建设 2025/12/21 21:12:35

视觉智能的巅峰对决:Nano Banana 的“奢侈”与豆包大模型的“普惠”之选

新钛云服已累计为您分享875篇技术干货全球视觉智能新浪潮—“香蕉风暴”与国内视觉大模型的较量在AI内容生成领域,一场关于“视觉天花板”的竞赛正愈演愈烈。近期,一款以“Nano Banana”为代号的模型以前所未有的姿态迅速在社区崛起,其官方身…

作者头像 李华
网站建设 2025/12/20 0:32:57

FaceFusion镜像内置预训练模型列表及适用场景说明

FaceFusion镜像内置预训练模型解析与应用实践在短视频内容爆炸式增长的今天,AI换脸技术早已从实验室走向大众创作工具。无论是影视特效、老照片修复,还是社交媒体上的趣味视频生成,背后都离不开一套高效、稳定的人脸处理流水线。FaceFusion正…

作者头像 李华
网站建设 2025/12/20 0:32:40

grex如何成为6G协议开发的强力助手?5个实战场景解析

在6G通信协议开发中,你是否曾为编写复杂的正则表达式而头疼?🤔 面对动态频谱管理、网络切片标识等新型需求,传统的手工编写方式显得力不从心。今天,让我们通过5个具体场景,看看grex这个智能正则表达式生成工…

作者头像 李华
网站建设 2025/12/21 21:41:15

爽爆了,200套简历模板免费下载

前言:简历模板200套免费送,免费简历讨论阅读文本大概需要 2 分钟。很多时候本想有很多机会与更多的同学互助,往往交集不得,简历也算是与大家建立一个连接的方式,200套建立模板免费送,直接下载,随…

作者头像 李华
网站建设 2025/12/21 11:52:51

如何快速掌握React Native Elements:新手完全指南

如何快速掌握React Native Elements:新手完全指南 【免费下载链接】react-native-elements Cross-Platform React Native UI Toolkit 项目地址: https://gitcode.com/gh_mirrors/re/react-native-elements React Native UI组件库是现代移动应用开发的重要工具…

作者头像 李华