news 2026/2/6 16:41:17

基于深度学习YOLOv10的骑手佩戴头盔识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
基于深度学习YOLOv10的骑手佩戴头盔识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

一、项目介绍

本项目基于YOLOv10目标检测算法,开发了一套专注于交通场景下骑手安全装备合规性检测的系统。模型共检测三类目标:佩戴的头盔(helmet)、摩托车车牌(license_plate)以及摩托车骑手(motorcyclist),类别数nc=3。该系统可同时对骑手、头盔及车牌进行实时定位,核心应用价值在于自动监控骑手是否按规定佩戴头盔,为智慧交通管理、违章自动执法及骑手安全督导提供有效的技术解决方案。项目采用最新的YOLOv10模型,在保持高推理速度的同时,显著提升了小目标的检测精度。

数据集介绍

本项目使用的数据集总规模为1803张图像,划分为训练集1563张、验证集140张和测试集100张。数据内容集中于城市道路与街景中的摩托车骑行者,图像均包含骑手、头盔及车牌关键目标。数据集经过精细标注,其中“helmet”类别标注骑手佩戴的头盔,“license_plate”类别针对摩托车后车牌区域,“motorcyclist”则标注骑手整体位置。数据分布注重真实场景的多样性,涵盖不同光照条件、遮挡情况及拍摄角度,验证集与测试集均未参与训练,用于客观评估模型泛化能力与实际部署性能。

目录

一、项目介绍

二、项目功能展示

系统功能

图片检测

视频检测

摄像头实时检测

三、数据集介绍

数据集概述

数据集特点

数据集配置文件

数据集制作流程

四、项目环境配置

创建虚拟环境

pycharm中配置anaconda

安装所需要库

五、模型训练

训练代码

训练结果

六、核心代码

七、项目源码(视频下方简介内)


基于深度学习YOLOv10的骑手佩戴头盔识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习YOLOv10的骑手佩戴头盔识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

二、项目功能展示

系统功能

图片检测:可对图片进行检测,返回检测框及类别信息。

视频检测:支持视频文件输入,检测视频中每一帧的情况。

摄像头实时检测:连接USB 摄像头,实现实时监测。

参数实时调节(置信度和IoU阈值)

  • 图片检测

该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。

  • 视频检测

视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频,并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示,适用于视频监控和分析等场景。

  • 摄像头实时检测

该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测,实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用,提供即时反馈。

核心特点:

  • 高精度:基于YOLO模型,提供精确的目标检测能力,适用于不同类型的图像和视频。
  • 实时性:特别优化的算法使得实时目标检测成为可能,无论是在视频还是摄像头实时检测中,响应速度都非常快。
  • 批量处理:支持高效的批量图像和视频处理,适合大规模数据分析。

三、数据集介绍

数据集概述

本项目使用的数据集总规模为1803张图像,划分为训练集1563张、验证集140张和测试集100张。数据内容集中于城市道路与街景中的摩托车骑行者,图像均包含骑手、头盔及车牌关键目标。数据集经过精细标注,其中“helmet”类别标注骑手佩戴的头盔,“license_plate”类别针对摩托车后车牌区域,“motorcyclist”则标注骑手整体位置。数据分布注重真实场景的多样性,涵盖不同光照条件、遮挡情况及拍摄角度,验证集与测试集均未参与训练,用于客观评估模型泛化能力与实际部署性能。

数据集配置文件

数据集采用YOLO格式的配置文件,主要包含:

train: F:\骑手佩戴头盔检测数据集\train\images val: F:\\骑手佩戴头盔检测数据集\valid\images test: F:\骑手佩戴头盔检测数据集\test\images nc: 3 names: ['helmet', 'license_plate', 'motorcyclist']

四、项目环境配置

创建虚拟环境

首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。

终端输入

conda create -n yolov10 python==3.9

激活虚拟环境

conda activate yolov10

安装cpu版本pytorch

pip install torch torchvision torchaudio

pycharm中配置anaconda

安装所需要库

pip install -r requirements.txt

五、模型训练

训练代码

from ultralytics import YOLOv10 model_path = 'yolov10s.pt' data_path = 'datasets/data.yaml' if __name__ == '__main__': model = YOLOv10(model_path) results = model.train(data=data_path, epochs=500, batch=64, device='0', workers=0, project='runs/detect', name='exp', )
根据实际情况更换模型 yolov10n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。 yolov10s.yaml (small):小模型,适合实时任务。 yolov10m.yaml (medium):中等大小模型,兼顾速度和精度。 yolov10b.yaml (base):基本版模型,适合大部分应用场景。 yolov10l.yaml (large):大型模型,适合对精度要求高的任务。
  • --batch 64:每批次64张图像。
  • --epochs 500:训练500轮。
  • --datasets/data.yaml:数据集配置文件。
  • --weights yolov10s.pt:初始化模型权重,yolov10s.pt是预训练的轻量级YOLO模型。

训练结果

六、核心代码

import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLOv10 from UiMain import UiMainWindow import time import os class DetectionThread(QThread): frame_received = pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal = pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parent=None): super().__init__(parent) self.model = model self.source = source self.conf = conf self.iou = iou self.running = True def run(self): try: if isinstance(self.source, int) or self.source.endswith(('.mp4', '.avi', '.mov')): # 视频或摄像头 cap = cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame = cap.read() if not ret: break # 保存原始帧 original_frame = frame.copy() # 检测 results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame = cv2.imread(self.source) if frame is not None: original_frame = frame.copy() results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(f"Detection error: {e}") finally: self.finished_signal.emit() def stop(self): self.running = False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model = None self.detection_thread = None self.current_image = None self.current_result = None self.video_writer = None self.is_camera_running = False self.is_video_running = False self.last_detection_result = None # 新增:保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name = self.model_combo.currentText() self.model = YOLOv10(f"{model_name}.pt") # 自动下载或加载本地模型 self.update_status(f"模型 {model_name} 加载成功") except Exception as e: QMessageBox.critical(self, "错误", f"模型加载失败: {str(e)}") self.update_status("模型加载失败") def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)") if file_path: self.clear_results() self.current_image = cv2.imread(file_path) self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测图片: {os.path.basename(file_path)}") def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)") if file_path: self.clear_results() self.is_video_running = True # 初始化视频写入器 cap = cv2.VideoCapture(file_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") save_path = os.path.join(save_dir, f"result_{timestamp}.mp4") fourcc = cv2.VideoWriter_fourcc(*'mp4v') self.video_writer = cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测视频: {os.path.basename(file_path)}") def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return self.clear_results() self.is_camera_running = True # 创建检测线程 (默认使用摄像头0) conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status("正在从摄像头检测...") def stop_detection(self): if self.detection_thread and self.detection_thread.isRunning(): self.detection_thread.stop() self.detection_thread.quit() self.detection_thread.wait() if self.video_writer: self.video_writer.release() self.video_writer = None self.is_camera_running = False self.is_video_running = False self.update_status("检测已停止") def on_frame_received(self, original_frame, result_frame, detections): # 更新原始图像和结果图像 self.display_image(self.original_image_label, original_frame) self.display_image(self.result_image_label, result_frame) # 保存当前结果帧用于后续保存 self.last_detection_result = result_frame # 新增:保存检测结果 # 更新表格 self.clear_results() for class_name, confidence, x, y in detections: self.add_detection_result(class_name, confidence, x, y) # 保存视频帧 if self.video_writer: self.video_writer.write(cv2.cvtColor(result_frame, cv2.COLOR_RGB2BGR)) def on_detection_finished(self): if self.video_writer: self.video_writer.release() self.video_writer = None self.update_status("视频检测完成,结果已保存") elif self.is_camera_running: self.update_status("摄像头检测已停止") else: self.update_status("图片检测完成") def save_result(self): if not hasattr(self, 'last_detection_result') or self.last_detection_result is None: QMessageBox.warning(self, "警告", "没有可保存的检测结果") return save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") if self.is_camera_running or self.is_video_running: # 保存当前帧为图片 save_path = os.path.join(save_dir, f"snapshot_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"截图已保存: {save_path}") else: # 保存图片检测结果 save_path = os.path.join(save_dir, f"result_{timestamp}.jpg") cv2.imwrite(save_path, cv2.cvtColor(self.last_detection_result, cv2.COLOR_RGB2BGR)) self.update_status(f"检测结果已保存: {save_path}") def closeEvent(self, event): self.stop_detection() event.accept() if __name__ == "__main__": app = QApplication(sys.argv) # 设置应用程序样式 app.setStyle("Fusion") # 创建并显示主窗口 window = MainWindow() window.show() sys.exit(app.exec_())

七、项目源码(视频下方简介内)

基于深度学习YOLOv10的骑手佩戴头盔识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习YOLOv10的骑手佩戴头盔识别检测系统(YOLOv10+YOLO数据集+UI界面+Python项目源码+模型)

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/2/5 18:16:22

【Open-AutoGLM短视频辅助神器】:揭秘AI全自动采集剪辑背后的黑科技

第一章:Open-AutoGLM短视频辅助神器概述Open-AutoGLM 是一款专为短视频内容创作者设计的智能化辅助工具,融合了自然语言处理、视觉生成与自动化流程编排能力,旨在提升内容生产效率与创意表达质量。该系统基于 GLM 大语言模型架构,…

作者头像 李华
网站建设 2026/2/6 6:03:12

揭秘Open-AutoGLM智能发票处理:如何3分钟完成报销单自动整理

第一章:揭秘Open-AutoGLM智能发票处理的核心价值Open-AutoGLM 是一款基于大语言模型与自动化流程引擎深度融合的智能文档处理平台,专注于解决企业级发票识别、分类与结构化提取中的复杂挑战。其核心价值在于将非标准化的发票数据转化为高精度、可操作的结…

作者头像 李华
网站建设 2026/2/4 5:21:37

FaceFusion支持FFmpeg深度集成,编码无压力

FaceFusion 深度集成 FFmpeg:让 AI 视频处理真正“无压力” 在短视频工厂日夜不停转、虚拟偶像频繁登台的今天,内容创作者面临的挑战早已不止于“有没有创意”,更在于“能不能快速交付”。尤其是涉及人脸替换这类高算力需求的任务——你可能训…

作者头像 李华
网站建设 2026/2/4 5:13:56

创芯科技USB-CAN分析仪驱动安装全攻略:新手快速上手指南 [特殊字符]

创芯科技USB-CAN分析仪驱动安装全攻略:新手快速上手指南 🚀 【免费下载链接】创芯科技USB-Can分析仪驱动 本仓库提供创芯科技USB-Can分析仪的驱动程序,该驱动程序专为配合Can-Test软件使用而设计。通过安装此驱动,用户可以顺利连接…

作者头像 李华
网站建设 2026/2/3 8:52:49

彻底掌握X-editable与Select2集成:构建企业级在线编辑下拉框

彻底掌握X-editable与Select2集成:构建企业级在线编辑下拉框 【免费下载链接】x-editable vitalets/x-editable: 是一个用于实现表单字段在线编辑的jQuery插件,可以方便地在Web应用中实现表单字段的在线编辑。适合对jQuery、表单编辑和想要实现表单在线编…

作者头像 李华