news 2026/2/10 7:43:07

PPIO × 商汤 LazyLLM: 一站式构建 Multi-Agent |实操指南

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
PPIO × 商汤 LazyLLM: 一站式构建 Multi-Agent |实操指南

随着大模型技术从单一对话向多智能体(Agent)协作演进,如何低成本、高效率地完成应用开发与落地成为行业焦点。

近日,PPIO 正式与 LazyLLM 达成深度合作,通过 LazyLLM 的统一接口和灵活的编排能力,配合 PPIO 提供的稳定、低延迟、高性价比的 API 支持,开发者可以轻松构建具备长程记忆、能自主调用外部工具的智能体。

LazyLLM 是构建和优化 Multi-Agent 应用的一站式开发工具,为应用开发过程中的全部环节(包括应用搭建、数据准备、模型部署、模型微调、评测等)提供了大量的工具,协助开发者用极低的成本构建 AI 应用,并可以持续地迭代优化效果。以下为完整教程,简单几步即可开启基于 PPIO 高性能模型API的智能体搭建。

01 PPIO × LazyLLM 配置教程

PPIO官网:https://ppio.com/

LazyLLM 项目地址(好项目必须点Star收藏!!):https://github.com/LazyAGI/LazyLLM

step1:注册 PPIO 账号并获取 API Key。

(1)获取API密钥

打开 API 密钥管理页面,点击创建按钮,输入自定义密钥名称,生成 API 密钥。

(2)生成并保存API密钥。

!!注意:密钥在服务端是加密存储,创建后无法再次查看,请妥善保存好密钥;若遗失需要在控制台上删除并创建一个新的密钥。

(3)在【模型广场】获取模型ID

推荐使用的模型:

  • GLM-4.7-Flash

  • Qwen3-VL

  • Deepseek V3.2

  • Kimi K2 Thinking

step2:环境配置,安装 LazyLLM。

详情可参考:LazyLLM-快速开始

下面以从pip为例,首先确保系统中已经安装好了PythonPipGit

(1)LazyLLM支持用pip直接安装:

pip3 install lazyllm

上述命令能够安装LazyLLM基础功能的最小依赖包。可以支持使用各类线上模型服务。

lazyllm install rag

运行后可以搭建基础的大模型应用,如基础的RAG系统与Agent。

(2)安装不同场景下的依赖:

成功安装LazyLLM后,您可以在命令行中使用lazyllm install xxx的命令,以针对不同的使用场景安装响应的依赖。

例如: 安装LazyLLM的所有功能最小依赖包。不仅支持线上模型的微调和推理,而且支持离线模型的微调(主要依赖LLaMA-Factory)和推理(主要依赖vLLM)。

lazyllm install standard

step3:调用API即可使用。

使用以下命令,输入获取的 API Key,设置对应的环境变量。

export LAZYLLM_PPIO_API_KEY=<申请到的api key>

02 案例教程

#三行代码构建聊天机器人

import lazyllm chat = lazyllm.OnlineModule('deepseek-v3.2') lazyllm.WebModule(chat, port=23466).start().wait()

#ReactAgent构建流程

# -*- coding: utf-8 -*- """ PPIO ReactAgent 构建示例 参考文档: https://docs.lazyllm.ai/zh-cn/stable/Learn/learn/#7-agent ReactAgent 遵循 ReAct(推理和行动)范式: Thought -> Action -> Observation -> Thought... -> Finish """ import lazyllm from lazyllm.tools import fc_register, ReactAgent # 步骤 1: 定义可被 Agent 调用的 Tool # 每个 Tool 应该保持能力单一、边界清晰 @fc_register("tool") def multiply_tool(a: int, b: int) -> int: """ 乘法工具:计算两个整数的乘积 Args: a (int): 被乘数 b (int): 乘数 Returns: int: a 和 b 的乘积 """ return a * b @fc_register("tool") def add_tool(a: int, b: int) -> int: """ 加法工具:计算两个整数的和 Args: a (int): 加数 b (int): 加数 Returns: int: a 和 b 的和 """ return a + b # 步骤 2: 创建 PPIO LLM 实例 llm = lazyllm.OnlineChatModule( source='ppio', model='deepseek/deepseek-v3.2' ) # 步骤 3: 定义工具列表 tools = ["multiply_tool", "add_tool"] # 步骤 4: 创建 ReactAgent agent = ReactAgent( llm=llm, tools=tools, max_retries=5, return_trace=False, stream=False ) # 步骤 5: 使用 Agent 处理查询 # Agent 会根据问题自动决定是否需要调用工具,以及调用哪个工具 query = "What is 20+(2*4)? Calculate step by step." result = agent(query) print(result)

#输出示例

03 结语

以上就是本次联合解决方案的完整实操指南。PPIO 的算力底座配合 LazyLLM 的一站式工具链,为 AI 应用开发提供了一条“即开即用”的捷径。我们希望通过这一标准化的流程,帮助大家从繁琐的底层调试中解放出来。

目前,双方的适配已全面上线,欢迎各位开发者即刻接入体验,我们期待看到更多富有创造力的智能体应用在这一生态中诞生。

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/2/5 7:53:22

AI时代,测试工程师如何转型产品经理?

一、引言&#xff1a;AI时代的转型机遇与测试工程师的独特优势 在人工智能技术迅猛发展的背景下&#xff0c;产品经理角色正经历深刻变革&#xff0c;AI产品经理成为行业新风口。对于软件测试从业者而言&#xff0c;转型并非遥不可及——测试工作中积累的系统性思维、细节把控…

作者头像 李华
网站建设 2026/2/7 19:32:55

从功能测试到AI淘金:一个测试工程师的副业觉醒

心数据&#xff1a;2025年全球AI测试工具市场规模突破$7.8亿&#xff08;Gartner&#xff09;&#xff0c;而中国软件测试从业者平均薪资仅1.8万元/月&#xff08;智联招聘&#xff09; 一、主业困局&#xff1a;测试工程师的职场天花板 技术代际断层 graph LR A[手工测试]--&g…

作者头像 李华
网站建设 2026/2/8 7:08:15

救命神器9个一键生成论文工具,继续教育学生轻松搞定论文!

救命神器9个一键生成论文工具&#xff0c;继续教育学生轻松搞定论文&#xff01; AI 工具如何成为论文写作的得力助手 在当前继续教育学生面临论文写作压力日益增大的背景下&#xff0c;AI 工具逐渐成为不可或缺的辅助工具。这些工具不仅能够帮助用户快速生成内容&#xff0c;还…

作者头像 李华
网站建设 2026/2/3 18:57:14

告别配图焦虑:Nano Banana Pro 深度实战

大家好&#xff0c;我是悟鸣。 最近有很多朋友问我&#xff1a;“你最近的很多文章的配图挺漂亮的&#xff0c;用什么模型&#xff1f;用什么提示词&#xff1f;” 如介绍“官方文档 Skill ”的图。 如介绍“通俗讲解 Skill ”的图。 这篇文章给大家分享一下流程&#xff0c;…

作者头像 李华
网站建设 2026/2/7 5:05:58

每日面试题分享153:JVM垃圾回收调优的目标是什么?

JVM垃圾回收调优的目标有两个&#xff0c;低延迟和高吞吐量。但通常这两个目标是互斥的&#xff0c;需要根据业务场景做取舍。低延迟指的是每次GC的停顿时间短&#xff0c;保证系统响应能力。比如在实时交易系统、游戏、即时通讯系统中&#xff0c;对系统响应能力要求很高&…

作者头像 李华