news 2025/12/31 20:53:49

基于YOLOv11的棉花叶片病害检测系统(YOLOv11深度学习+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
基于YOLOv11的棉花叶片病害检测系统(YOLOv11深度学习+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

一、项目介绍

摘要
本研究构建了一套基于深度学习YOLOv11的棉花叶片病害检测系统,旨在实现棉花病害的快速、准确识别与分类。系统针对六类目标病害(blight、curl、grey mildew、healthy、leaf spot、wilt)进行检测,利用包含3708张训练集、232张验证集及233张测试集的高质量YOLO格式数据集进行模型训练与评估。在算法层面,采用YOLOv11模型以兼顾检测精度与推理速度,并在数据预处理、数据增强及模型超参数优化方面进行针对性改进。在应用层面,系统集成了友好的UI界面及登录注册功能,支持用户通过图形化操作进行病害图像上传与检测,输出结果包括病害类别、置信度及可视化标注。实验结果表明,该系统在棉花叶片病害检测中具有较高的精度与鲁棒性,为农业病虫害智能监测及精准防治提供了有效的技术支持。


引言
棉花作为全球重要的经济作物,其产量与品质直接影响纺织产业和农业经济。然而,棉花在生长过程中易受到多种叶部病害的侵袭,如枯萎病(wilt)、叶斑病(leaf spot)、卷叶病(curl)等,这些病害不仅会降低光合作用效率,还可能造成严重减产。传统的病害检测主要依赖人工巡检与经验判断,不仅费时费力,而且主观性强、准确率有限。
近年来,深度学习在计算机视觉领域取得了显著突破,其中目标检测算法(如YOLO系列)凭借高效的特征提取能力与实时检测性能,在农业病害识别中展现出广阔的应用前景。YOLOv11作为该系列的最新版本,进一步优化了特征金字塔结构与检测头设计,在小目标识别和复杂背景下的检测能力均有显著提升。
基于此,本文设计并实现了一套基于YOLOv11的棉花叶片病害检测系统,涵盖模型训练、检测推理与用户交互等环节,以满足农业生产中的实时性与易用性需求。通过在包含六类棉花叶片病害的专用数据集上训练与测试,系统实现了对不同病害类型的精准识别,为智慧农业、病害预警与防治决策提供了可靠的技术支撑。

目录

一、项目介绍

二、项目功能展示

2.1 用户登录系统

2.2 检测功能

2.3 检测结果显示

2.4 参数配置

2.5 其他功能

3. 技术特点

4. 系统流程

三、数据集介绍

数据集配置文件

四、项目环境配置

创建虚拟环境

安装所需要库

五、模型训练

训练代码

训练结果

六、核心代码

🔐登录注册验证

🎯 多重检测模式

🖼️ 沉浸式可视化

⚙️ 参数配置系统

✨ UI美学设计

🔄 智能工作流

七、项目源码(视频简介)


基于深度学习YOLOv11的棉花叶片病害检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习YOLOv11的棉花叶片病害检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

二、项目功能展示

✅ 用户登录注册:支持密码检测和安全性验证。

✅ 三种检测模式:基于YOLOv11模型,支持图片、视频和实时摄像头三种检测,精准识别目标。

✅ 双画面对比:同屏显示原始画面与检测结果。

✅ 数据可视化:实时表格展示检测目标的类别、置信度及坐标。

✅智能参数调节:提供置信度滑块,动态优化检测精度,适应不同场景需求。

✅科幻风交互界面:深色主题搭配动态光效,减少视觉疲劳,提升操作体验。

✅多线程高性能架构:独立检测线程保障流畅运行,实时状态提示,响应迅速无卡顿。

2.1 用户登录系统

  • 提供用户登录和注册功能

  • 用户名和密码验证

  • 账户信息本地存储(accounts.json)

  • 密码长度至少6位的安全要求

2.2 检测功能

  • 图片检测:支持JPG/JPEG/PNG/BMP格式图片的火焰烟雾检测

  • 视频检测:支持MP4/AVI/MOV格式视频的逐帧检测

  • 摄像头检测:实时摄像头流检测(默认摄像头0)

  • 检测结果保存到"results"目录

2.3 检测结果显示

  • 显示原始图像和检测结果图像

  • 检测结果表格展示,包含:

    • 检测到的类别

    • 置信度分数

    • 物体位置坐标(x,y)、

2.4 参数配置

  • 模型选择

  • 置信度阈值调节(0-1.0)

  • IoU(交并比)阈值调节(0-1.0)

  • 实时同步滑块和数值输入框

2.5 其他功能

  • 检测结果保存功能

  • 视频检测时自动保存结果视频

  • 状态栏显示系统状态和最后更新时间

  • 无边框窗口设计,可拖动和调整大小

3. 技术特点

  • 采用多线程处理检测任务,避免界面卡顿

  • 精美的UI设计,具有科技感的视觉效果:

    • 发光边框和按钮

    • 悬停和按下状态效果

    • 自定义滑块、表格和下拉框样式

  • 检测结果保存机制

  • 响应式布局,适应不同窗口大小

4. 系统流程

  1. 用户登录/注册

  2. 选择检测模式(图片/视频/摄像头)

  3. 调整检测参数(可选)

  4. 开始检测并查看结果

  5. 可选择保存检测结果

  6. 停止检测或切换其他模式

三、数据集介绍

本研究所使用的棉花叶片病害检测数据集为YOLO格式标注数据集,涵盖棉花在不同生长时期、不同环境条件下的叶片图像,旨在全面反映实际农业生产中可能出现的病害类型与健康状态。数据集包含6 类标签

  1. blight(枯叶病)——叶片呈现大片褐色坏死斑,边缘常伴有黄化。

  2. curl(卷叶病)——叶片边缘或整体卷曲,严重时影响棉花光合作用。

  3. grey mildew(灰霉病)——叶面覆盖灰白色霉层,多发生在高湿环境下。

  4. healthy(健康)——无明显病斑或形态异常的叶片。

  5. leaf spot(叶斑病)——叶片出现大小不一的圆形或不规则病斑,颜色多为褐色或黑色。

  6. wilt(萎蔫病)——叶片萎蔫下垂,失去正常挺立状态。

数据集总计4173 张图像,其中:

  • 训练集:3708 张(约占 88.9%),用于模型参数学习与特征提取。

  • 验证集:232 张(约占 5.6%),用于模型超参数调整与中间性能评估。

  • 测试集:233 张(约占 5.6%),用于模型最终性能评估,保证评估结果的客观性与泛化性

数据集配置文件

数据集采用标准化YOLO格式组织:

train: F:\棉花叶片病害数据集\train\images val: F:\棉花叶片病害数据集\valid\images test: F:\棉花叶片病害数据集\test\images nc: 6 names: ['blight', 'curl', 'grey mildew', 'healthy', 'leaf spot', 'wilt']

四、项目环境配置

创建虚拟环境

首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。

终端输入

conda create -n yolov11 python==3.9

激活虚拟环境

conda activate yolov11

安装cpu版本pytorch

pip install torch torchvision torchaudio

安装所需要库

pip install -r requirements.txt

pycharm中配置anaconda

五、模型训练

训练代码

from ultralytics import YOLO model_path = 'yolo11s.pt' data_path = 'data.yaml' if __name__ == '__main__': model = YOLO(model_path) results = model.train(data=data_path, epochs=100, batch=8, device='0', workers=0, project='runs', name='exp', )
根据实际情况更换模型 # yolov11n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。 # yolov11s.yaml (small):小模型,适合实时任务。 # yolov11m.yaml (medium):中等大小模型,兼顾速度和精度。 # yolov11b.yaml (base):基本版模型,适合大部分应用场景。 # yolov11l.yaml (large):大型模型,适合对精度要求高的任务。
  • --batch 8:每批次8张图像。
  • --epochs 100:训练100轮。
  • --datasets/data.yaml:数据集配置文件。
  • --weights yolov11s.pt:初始化模型权重,yolov11s.pt是预训练的轻量级YOLO模型。

训练结果

六、核心代码

import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLO from UiMain import UiMainWindow import time import os from PyQt5.QtWidgets import QDialog from LoginWindow import LoginWindow class DetectionThread(QThread): frame_received = pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal = pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parent=None): super().__init__(parent) self.model = model self.source = source self.conf = conf self.iou = iou self.running = True def run(self): try: if isinstance(self.source, int) or self.source.endswith(('.mp4', '.avi', '.mov')): # 视频或摄像头 cap = cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame = cap.read() if not ret: break # 保存原始帧 original_frame = frame.copy() # 检测 results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame = cv2.imread(self.source) if frame is not None: original_frame = frame.copy() results = self.model(frame, conf=self.conf, iou=self.iou) annotated_frame = results[0].plot() # 提取检测结果 detections = [] for result in results: for box in result.boxes: class_id = int(box.cls) class_name = self.model.names[class_id] confidence = float(box.conf) x, y, w, h = box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(f"Detection error: {e}") finally: self.finished_signal.emit() def stop(self): self.running = False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model = None self.detection_thread = None self.current_image = None self.current_result = None self.video_writer = None self.is_camera_running = False self.is_video_running = False self.last_detection_result = None # 新增:保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name = self.model_combo.currentText() self.model = YOLO(f"{model_name}.pt") # 自动下载或加载本地模型 self.update_status(f"模型 {model_name} 加载成功") except Exception as e: QMessageBox.critical(self, "错误", f"模型加载失败: {str(e)}") self.update_status("模型加载失败") def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)") if file_path: self.clear_results() self.current_image = cv2.imread(file_path) self.current_image = cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测图片: {os.path.basename(file_path)}") def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return file_path, _ = QFileDialog.getOpenFileName( self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)") if file_path: self.clear_results() self.is_video_running = True # 初始化视频写入器 cap = cv2.VideoCapture(file_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir = "results" os.makedirs(save_dir, exist_ok=True) timestamp = time.strftime("%Y%m%d_%H%M%S") save_path = os.path.join(save_dir, f"result_{timestamp}.mp4") fourcc = cv2.VideoWriter_fourcc(*'mp4v') self.video_writer = cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f"正在检测视频: {os.path.basename(file_path)}") def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, "警告", "请先停止当前检测任务") return self.clear_results() self.is_camera_running = True # 创建检测线程 (默认使用摄像头0) conf = self.confidence_spinbox.value() iou = self.iou_spinbox.value() self.detection_thread = DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status("正在从摄像头检测...")

🔐登录注册验证

对应文件:LoginWindow.py

# 账户验证核心逻辑 def handle_login(self): username = self.username_input.text().strip() password = self.password_input.text().strip() if not username or not password: QMessageBox.warning(self, "警告", "用户名和密码不能为空!") return if username in self.accounts and self.accounts[username] == password: self.accept() # 验证通过 else: QMessageBox.warning(self, "错误", "用户名或密码错误!") # 密码强度检查(注册时) def handle_register(self): if len(password) < 6: # 密码长度≥6位 QMessageBox.warning(self, "警告", "密码长度至少为6位!")

🎯多重检测模式

对应文件:main.py

图片检测

def detect_image(self): file_path, _ = QFileDialog.getOpenFileName( self, "选择图片", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)") if file_path: self.detection_thread = DetectionThread(self.model, file_path, conf, iou) self.detection_thread.start() # 启动检测线程

视频检测

def detect_video(self): file_path, _ = QFileDialog.getOpenFileName( self, "选择视频", "", "视频文件 (*.mp4 *.avi *.mov)") if file_path: self.video_writer = cv2.VideoWriter() # 初始化视频写入器 self.detection_thread = DetectionThread(self.model, file_path, conf, iou)

实时摄像头

def detect_camera(self): self.detection_thread = DetectionThread(self.model, 0, conf, iou) # 摄像头设备号0 self.detection_thread.start()

🖼️沉浸式可视化

对应文件:UiMain.py

双画面显示

def display_image(self, label, image): q_img = QImage(image.data, w, h, bytes_per_line, QImage.Format_RGB888) pixmap = QPixmap.fromImage(q_img) label.setPixmap(pixmap.scaled(label.size(), Qt.KeepAspectRatio)) # 自适应缩放

结果表格

def add_detection_result(self, class_name, confidence, x, y): self.results_table.insertRow(row) items = [ QTableWidgetItem(class_name), # 类别列 QTableWidgetItem(f"{confidence:.2f}"), # 置信度 QTableWidgetItem(f"{x:.1f}"), # X坐标 QTableWidgetItem(f"{y:.1f}") # Y坐标 ]

⚙️参数配置系统

对应文件:UiMain.py

双阈值联动控制

# 置信度阈值同步 def update_confidence(self, value): confidence = value / 100.0 self.confidence_spinbox.setValue(confidence) # 滑块→数值框 self.confidence_label.setText(f"置信度阈值: {confidence:.2f}") # IoU阈值同步 def update_iou(self, value): iou = value / 100.0 self.iou_spinbox.setValue(iou)

UI美学设计

对应文件:UiMain.py

科幻风格按钮

def create_button(self, text, color): return f""" QPushButton {{ border: 1px solid {color}; color: {color}; border-radius: 6px; }} QPushButton:hover {{ background-color: {self.lighten_color(color, 10)}; box-shadow: 0 0 10px {color}; # 悬停发光效果 }} """

动态状态栏

def update_status(self, message): self.status_bar.showMessage( f"状态: {message} | 最后更新: {time.strftime('%H:%M:%S')}" # 实时时间戳 )

🔄智能工作流

对应文件:main.py

线程管理

class DetectionThread(QThread): frame_received = pyqtSignal(np.ndarray, np.ndarray, list) # 信号量通信 def run(self): while self.running: # 多线程检测循环 results = self.model(frame, conf=self.conf, iou=self.iou) self.frame_received.emit(original_frame, result_frame, detections)

七、项目源码(视频简介)

基于深度学习YOLOv11的棉花叶片病害检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)_哔哩哔哩_bilibili

基于深度学习YOLOv11的棉花叶片病害检测系统(YOLOv11+YOLO数据集+UI界面+登录注册界面+Python项目源码+模型)

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2025/12/30 17:36:35

ClickHouse版本管理终极指南:5步实现零风险升级与回滚

ClickHouse版本管理终极指南&#xff1a;5步实现零风险升级与回滚 【免费下载链接】ClickHouse ClickHouse 是一个免费的大数据分析型数据库管理系统。 项目地址: https://gitcode.com/GitHub_Trending/cli/ClickHouse ClickHouse版本管理是每个数据库管理员必须掌握的核…

作者头像 李华
网站建设 2025/12/31 6:32:08

深度学习与神经网络实战

深度学习与神经网络实战 【免费下载链接】Discrete-TimeSignalProcessing-第三版分享 本书《Discrete-Time Signal Processing》是由信号处理领域权威专家Alan V. Oppenheim和Ronald W. Schafer合著的第三国际版。这是一本在数字信号处理领域的经典教材&#xff0c;广泛应用于高…

作者头像 李华
网站建设 2025/12/30 17:53:40

Silvaco TCAD半导体仿真技术深度解析

Silvaco TCAD半导体仿真技术深度解析 【免费下载链接】Silvaco用户手册中文版分享 本仓库提供了一份名为“半导体工艺和器件仿真工具__Silvaco_TCAD_实用教程.pdf”的资源文件下载。该文件是Silvaco TCAD工具的用户手册中文版&#xff0c;旨在帮助用户更好地理解和使用Silvaco …

作者头像 李华
网站建设 2025/12/30 14:48:16

Docker镜像源不稳定?我们提供高速稳定的PyTorch-CUDA-v2.7镜像下载

Docker镜像源不稳定&#xff1f;我们提供高速稳定的PyTorch-CUDA-v2.7镜像下载 在深度学习项目中&#xff0c;最让人抓狂的不是模型不收敛&#xff0c;而是环境配置出问题&#xff1a;torch.cuda.is_available() 返回 False、CUDA 版本和 PyTorch 不匹配、驱动报错找不到 libc…

作者头像 李华
网站建设 2025/12/30 19:14:56

Vue Trend:为你的Vue.js应用注入优雅的数据可视化力量

Vue Trend&#xff1a;为你的Vue.js应用注入优雅的数据可视化力量 【免费下载链接】vue-trend &#x1f308; Simple, elegant spark lines for Vue.js 项目地址: https://gitcode.com/gh_mirrors/vu/vue-trend 在当今数据驱动的时代&#xff0c;如何以简洁优雅的方式展…

作者头像 李华
网站建设 2025/12/30 19:13:51

戴森球计划FactoryBluePrints蓝图选择与效率提升完整指南

还在为戴森球计划中复杂的工厂设计而烦恼吗&#xff1f;FactoryBluePrints蓝图库为你提供了海量现成方案&#xff0c;但如何从中选出最适合的配置方案成为关键挑战。本指南将为你揭示蓝图选择的核心技巧&#xff0c;帮助你在数千个蓝图中快速找到最优解&#xff0c;实现工厂效率…

作者头像 李华