news 2026/2/3 19:48:25

Day 32

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
Day 32

DAY 32

昨天我们已经介绍了如何在不同的文件中,导入其他目录的文件,核心在于了解导入方式和python解释器检索目录的方式。

搞清楚了这些,那我们就可以来看看,如何把一个文件,拆分成多个具有着独立功能的文件,然后通过import的方式,来调用这些文件。这样具有几个好处:

  1. 可以让项目文件变得更加规范和清晰
  2. 可以让项目文件更加容易维护,修改某一个功能的时候,只需要修改一个文件,而不需要修改多个文件。
  3. 文件变得更容易复用,部分通用的文件可以单独拿出来,进行其他项目的复用。

机器学习项目的流程

一个典型的机器学习项目通常包含以下阶段:

  • 数据加载:从文件、数据库、API 等获取原始数据。
    • 命名参考:load_data.pydata_loader.py
  • 数据探索与可视化:了解数据特性,初期可用 Jupyter Notebook,成熟后固化绘图函数。
    • 命名参考:eda.pyvisualization_utils.py
  • 数据预处理:处理缺失值、异常值,进行标准化、归一化、编码等操作。
    • 命名参考:preprocess.pydata_cleaning.pydata_transformation.py
  • 特征工程:创建新特征,选择、优化现有特征。
    • 命名参考:feature_engineering.py
  • 模型训练:构建模型架构,设置超参数并训练,保存模型。
    • 命名参考:model.pytrain.py
  • 模型评估:用合适指标评估模型在测试集上的性能,生成报告。
    • 命名参考:evaluate.py
  • 模型预测:用训练好的模型对新数据预测。
    • 命名参考:predict.pyinference.py

文件的组织

1. 项目核心代码组织

  • src/(source的缩写):存放项目的核心源代码。按照机器学习项目阶段进一步细分:
    • src/data/:放置与数据相关的代码。
      • src/data/load_data.py:负责从各类数据源(如文件系统、数据库、API 等)读取原始数据。
      • src/data/preprocess.py:进行数据清洗(处理缺失值、异常值)、数据转换(标准化、归一化、编码等)操作。
      • src/data/feature_engineering.py:根据业务和数据特点,创建新特征或对现有特征进行选择、优化。
    • src/models/:关于模型的代码。
      • src/models/model.py:定义模型架构,比如神经网络结构、机器学习算法模型设定等。
      • src/models/train.py:设置模型超参数,并执行训练过程,保存训练好的模型。
      • src/models/evaluate.py:使用合适的评估指标(如准确率、召回率、均方误差等),在测试集上评估模型性能,生成评估报告。
      • src/models/predict.pysrc/models/inference.py:利用训练好的模型对新数据进行预测。
    • src/utils/:存放通用辅助函数代码,可进一步细分:
      • src/utils/io_utils.py:包含文件读写相关帮助函数,比如读取特定格式文件、保存数据到文件等。
      • src/utils/logging_utils.py:实现日志记录功能,方便记录项目运行过程中的信息,便于调试和监控。
      • src/utils/math_utils.py:特定的数值计算函数,像自定义的矩阵运算、统计计算等。
      • src/utils/plotting_utils.py:绘图工具函数,用于生成数据可视化图表(如绘制损失函数变化曲线、特征分布直方图等 )。

2. 配置文件管理

  • config/ 目录:集中存放项目的配置文件,方便管理和切换不同环境(开发、测试、生产)的配置。
    • config/config.pyconfig/settings.py:以 Python 代码形式定义配置参数。
    • config/config.yamlconfig/config.json:采用 YAML 或 JSON 格式,清晰列出文件路径、模型超参数、随机种子、API 密钥等可配置参数。
    • .env文件:通常放在项目根目录,用于存储敏感信息(如数据库密码、API 密钥等),在代码中通过环境变量的方式读取,一般会被.gitignore忽略,防止敏感信息泄露。

3. 实验与探索代码

  • notebooks/ 或 experiments/ 目录:用于初期的数据探索、快速实验、模型原型验证。

    • notebooks/initial_eda.ipynb:在项目初期,使用 Jupyter Notebook 进行数据探索与可视化,了解数据特性,分析数据分布、相关性等。
    • experiments/model_experimentation.py:编写脚本对不同模型架构、超参数组合进行快速实验,对比实验结果,寻找最优模型设置。

    这部分往往是最开始的探索阶段,后面跑通了后拆分成了完整的项目,留作纪念用。

4. 项目产出物管理

  • data/ 目录:存放项目相关数据。
    • data/raw/:放置从外部获取的未经处理的原始数据,保持数据原始状态。
    • data/processed/:存放经过预处理(清洗、转换、特征工程等操作)后的数据,供模型训练和评估使用。
    • data/interim/:(可选)保存中间处理结果,比如数据清洗过程中生成的临时文件、特征工程中间步骤产生的数据等。
  • models/ 目录:专门存放训练好的模型文件,根据模型保存格式不同,可能是.pkl(Python pickle 格式,常用于保存 sklearn 模型 )、.h5(常用于保存 Keras 模型 )、.joblib等。
  • reports/ 或 output/ 目录:存储项目运行产生的各类报告和输出文件。
    • reports/evaluation_report.txt:记录模型评估的详细结果,包括各项评估指标数值、模型性能分析等。
    • reports/visualizations/:存放数据可视化图片,如损失函数收敛图、预测结果对比图等。
    • output/logs/:保存项目运行日志文件,记录项目从开始到结束过程中的关键信息,如训练开始时间、训练过程中的损失值变化、预测时间等。
      总结一下通用的拆分起步思路:
  1. 首先,按照机器学习的主要工作流程(数据处理、训练、评估等)将代码分离到不同的.py文件中。这是最基本也是最有价值的一步。
  2. 然后,创建一个utils.py来存放通用的辅助函数。
  3. 考虑将所有配置参数集中到一个config.py文件中。
  4. 为你的数据和模型产出物创建专门的顶层目录,如data/models/,将它们与你的源代码(通常放在src/目录)分开。

当遵循这些通用的拆分思路和原则时,项目结构自然会变得清晰。

注意事项

ifname== “main

常常会看到ifname== "main"这个写法,实际上,每个文件都是一个对象,对象就会有属性和方法。

如果直接运行这个文件,则__name__等于__main__,若这个文件被其他模块导入,则__name__不等于__main__。

这个写法有如下好处:

  1. 明确程序起点:一个 Python 项目往往由多个模块组成。ifname== “main” 可清晰界定程序执行的起始位置。比如一个包含数据处理模块 data_processing.py、模型训练模块 model_training.py 的机器学习项目,在 model_training.py 中用 ifname== “main” 包裹训练相关的主逻辑代码,运行该文件时就知道需要从这里开始执行(其他文件都是附属文件),让项目结构和执行流程更清晰。(大多时候如此)

  2. 避免执行:python遵从模块导入即执行机制,当你使用 import xxx 导入一个模块时,Python 会执行该模块中的所有顶层代码(即不在任何函数或类内部的代码)。如果顶层代码中定义了全局变量或执行了某些操作(如读取文件、初始化数据库连接),这些操作会在导入时立即生效,并可能影响整个程序的状态。为了避免执行不必要的代码,我们可以使用 ifname== “main” 来避免在导入时执行不必要的代码。这样,只有当模块被直接运行时(即被执行 python xxx.py),才会执行顶层代码,而导入时则不会执行。这样,我们就可以确保在导入模块时,不会执行不必要的代码,从而提高程序的性能和可维护性。

  3. 合理的资源管理:ifname== “main” 与定义 main 函数结合使用,函数内变量在函数执行完这些变量被释放,能及时回收内存资源,避免内存泄漏,保证程序高效运行。

编码格式

规范的py文件,首行会有:# -- coding: utf-8 --

主要目的是 显式声明文件的编码格式,确保 Python 解释器能正确读取和解析文件中的非 ASCII 字符(如中文、日文、特殊符号等)。也就是说这个是写给解释器看的。

因为,在 Python 2.x 时代,默认编码是 ASCII,不支持直接在代码中写入非 ASCII 字符(如中文注释、字符串中的中文),否则会报错(SyntaxError: Non-UTF-8 code starting with…)。但是Python 3.x 默认为 UTF-8 编码,理论上可以省略编码声明。但实际开发中,为了兼容旧代码、明确文件编码规则,或在团队协作中避免因编辑器 / 环境配置不同导致的乱码问题,许多开发者仍会保留这一行声明。

ps:

  1. 编码声明必须出现在文件的前两行(通常是首行),否则会被忽略。
  2. 如果编码格式没问题,可能是vscode的编码格式不是utf-8,可以尝试修改编码格式。
  3. 常见的编码报错是因为字符串编码问题,可以尝试显式转化,即读取的时候转化为utf-8编码。

非 ASCII 字符的代码如下所示:

-- coding: utf-8 --

msg = “你好,世界!” # 中文字符串
print(msg)
很多时候,项目中会包含gitattribute文件,来确保在不同操作系统和编辑器中,文件的编码格式一致。这里我们后面说到git工具在介绍

类型注解

Python 的类型注解是在 Python 3.5+ 引入的特性,用于为变量、函数参数、返回值和类属性等添加类型信息。虽然 Python 仍是动态类型语言,但类型注解可以提高代码可读性、可维护性,并支持静态类型检查工具(如 mypy)。

其次你在安装python插件的时候,附带安装了2个插件

  1. 一个是python debugger用于断点调试,我们已经介绍了
  2. 另一个是pylance,用于代码提示和类型检查,这个插件会根据你的代码中的类型注解,给出相应的提示和检查,比如你定义了一个函数,参数类型是int,那么当你传入一个字符串时,它会提示你传入的参数类型不正确。

变量类型注解语法为 变量名: 类型

变量的类型注解

name: str = “Alice”
age: int = 30
height: float = 1.75
is_student: bool = False
函数类型注解为函数参数和返回值指定类型,语法为 def 函数名(参数: 类型) -> 返回类型。
def add(a: int, b: int) -> int:
return a + b

def greet(name: str) -> None:
print(f"Hello, {name}")
类属性与方法的类型注解:为类的属性和方法添加类型信息。

定义一个矩形类

class Rectangle:
width: float # 矩形宽度(浮点数),类属性的类型注解(不初始化值)
height: float # 矩形高度(浮点数)

def __init__(self, width: float, height: float): self.width = width self.height = height def area(self) -> float: # 计算面积(宽度 × 高度) return self.width * self.height

上述的width: float # 矩形宽度(浮点数)这个写法由于没有对变量赋值,所以是一种类型注解写法
@浙大疏锦行

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/2/3 0:58:31

16、Linux常用命令详解

Linux常用命令详解 1. ftpd命令 1.1 ftp子命令 命令 功能 site [command] 在远程机器上运行特定站点命令 size filename 返回远程机器上指定文件的大小 status 显示当前ftp状态 struct [struct-name] 设置文件传输结构,默认使用流结构 sunique 切换远程机器…

作者头像 李华
网站建设 2026/2/3 0:03:33

分布式系统一致性协议深度解析:从Paxos到Raft,再到工程落地实践

在分布式系统架构中,“一致性”是保障数据可靠性与服务可用性的核心命题。当数据分散存储于多个节点,如何在节点故障、网络分区、消息延迟等异常场景下,确保各节点数据视图一致,是分布式系统设计的关键挑战。Paxos、Raft、ZAB等一…

作者头像 李华
网站建设 2026/2/3 0:03:31

现代C++与Qt飞行仪表库:让飞行模拟开发触手可及

现代C与Qt飞行仪表库:让飞行模拟开发触手可及 【免费下载链接】QFlightInstruments QFlightInstruments clone with Qt and Modern C updates 项目地址: https://gitcode.com/gh_mirrors/qfl/QFlightInstruments 还在为飞行模拟项目中的仪表界面开发而头疼吗…

作者头像 李华
网站建设 2026/2/3 1:02:13

回收台达PLC,伺服,变频器等

台达(Delta)是全球知名的工业自动化品牌,提供高效节能的整体解决方案。其产品线涵盖PLC、伺服驱动、变频器及HMI等,以高性价比、稳定可靠著称,广泛应用于各类智能制造与设备控制领域。 热门型号示例: PL…

作者头像 李华
网站建设 2026/2/3 0:03:38

TikTok直播录制终极解决方案:一键自动保存精彩瞬间

你是否曾经错过心爱主播的精彩直播?是否希望永久珍藏那些难忘的互动时刻?现在,这款强大的开源工具能够完美解决你的烦恼,通过TikTok直播录制功能,让每一个精彩瞬间都能被自动保存。 【免费下载链接】tiktok-live-recor…

作者头像 李华