news 2026/1/16 9:22:44

【阅读笔记】Bayer阵列坏点校正-《Adaptive pixel defect correction》

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
【阅读笔记】Bayer阵列坏点校正-《Adaptive pixel defect correction》

一、背景

本文提出了一种相对简单的缺陷校正算法,仅需7×7的原始彩色滤光片阵列数据核即可有效校正多种缺陷类型。该自适应边缘算法具有高质量、占用图像行数少、适应性强且独立于其他板载DSP算法的特点。实验结果表明,相较于传统一维校正方法,该算法在高频图像区域的校正效果显著提升

二、原理:

由于相邻像素能为缺陷像素的插值提供最佳信息,希望先确定该区域的边缘方向,再利用该方向上的两个相邻像素来估算缺失像素值。bayer结构下与缺陷颜色相同且最近的已知信息至少相隔两个像素,插值精度会随着与缺陷位置距离的增加而急剧下降

三、算法整体流程(在 7×7 Bayer 原始窗口内完成)

1、方向向量提取

以缺陷像素 d[m0,n0] 为中心,按 4 个方向抽 7 点向量: d1:垂直 d2:主对角 d3:水平 d4:副对角

d 1 ( n ) = a ( m 0 , n 0 − 3 ) , . . . . a ( m 0 , n 0 ) , . . . , a ( m 0 , n 0 + 3 ) d_1(n)=a(m_0,n_0-3),....a(m_0,n_0),...,a(m_0,n_0+3)d1(n)=a(m0,n03),....a(m0,n0),...,a(m0,n0+3)

d 2 ( n ) = a ( m 0 − 3 , n 0 + 3 ) , . . . . a ( m 0 , n 0 ) , . . . , a ( m 0 + 3 , n 0 − 3 ) d_2(n)=a(m_0-3,n_0+3),....a(m_0,n_0),...,a(m_0+3,n_0-3)d2(n)=a(m03,n0+3),....a(m0,n0),...,a(m0+3,n03)

d 3 ( n ) = a ( m 0 − 3 , n 0 ) , . . . . a ( m 0 , n 0 ) , . . . , a ( m 0 + 3 , n 0 ) d_3(n)=a(m_0-3,n_0),....a(m_0,n_0),...,a(m_0+3,n_0)d3(n)=a(m03,n0),....a(m0,n0),...,a(m0+3,n0)

d 4 ( n ) = a ( m 0 − 3 , n 0 − 3 ) , . . . . a ( m 0 , n 0 ) , . . . , a ( m 0 + 3 , n 0 + 3 ) d_4(n)=a(m_0-3,n_0-3),....a(m_0,n_0),...,a(m_0+3,n_0+3)d4(n)=a(m03,n03),....a(m0,n0),...,a(m0+3,n0+3)

备注: 如果缺陷是整列缺陷,则不使用垂直向量 d1。

2、向量内部坏点处理

若某位置仍是坏点,用“隔 2 点镜像”快速插值补全,避免把台阶平均掉。 4 条向量全部变为“无坏点”的连续信号。确保向量一侧的阶跃函数不会被平均到另一侧。这可确保在算法后续阶段,该向量不会被错误地选为边缘方向

3、跨颜色平面归一化(核心)

对每条向量取最近同色点d i [ − 2 ] d_i[-2]di[2]、$d_i[+2]做基准;向量点 做基准; 向量点做基准;向量点di[−1]和 和di[+1]$(即距离缺陷最近的点,计算异色平面在缺陷两侧的一阶导数σ i ( − 1 ) \sigma_{i}(-1)σi(1),σ i ( 1 ) \sigma_{i}(1)σi(1)

σ i ( − 1 ) = d i ( − 1 ) − d i ( − 3 ) 2 \sigma_{i}(-1)=\frac{d_{i}(-1)-d_{i}(-3)}{2}σi(1)=2di(1)di(3)

σ ( 1 ) = d i ( 1 ) − d i ( 3 ) 2 \sigma(1)=\frac{d_{i}(1)-d_{i}(3)}{2}σ(1)=2di(1)di(3)

方向导数用于关联缺陷颜色平面附近的点,定义新的向量来估计样本点相对于缺陷颜色平面的位置,把异色点d i ^ ( − 1 ) \hat{d_{i}}(-1)di^(1)d i ^ ( 1 ) \hat{d_{i}}(1)di^(1)按导数偏移量“搬”到缺陷颜色平面,得到归一化值

d i ^ ( − 1 ) = d i ( − 2 ) + σ i ( − 1 ) \hat{d_{i}}(-1)={d_{i}(-2)+\sigma_{i}(-1)}di^(1)=di(2)+σi(1)

d i ^ ( 1 ) = d i ( 2 ) + σ i ( 1 ) \hat{d_{i}}(1)={d_{i}(2)+\sigma_{i}(1)}di^(1)=di(2)+σi(1)

该算法无需知晓特定像素的实际滤色值——它仅需知道拜耳模式在任意方向上会采样两种颜色。

4、 边缘加权融合

加权融合公式如下:

β i = 1 − σ i k ∑ σ i k I − 1 \beta_{i}=\frac{1-\frac{\sigma_{i}^{k}}{\sum\sigma_{i}^{k}}}{I-1}βi=I11σikσik

其中,计算向量灰度差

σ i = ∣ d i ( − 1 ) − d i ( 1 ) ∣ \sigma_{i}=|d_i(-1)-d_i(1)|σi=di(1)di(1)

指数k可调节以改变算法对di[n]差异的敏感度,敏感度随k增大而增强。使用向量的数量用I表示。与边缘方向对齐最接近的向量(即|di[−1]−di[+1]|最小值)将具有最大 ξi 权重。

缺陷补偿

a ^ ( m 0 , n 0 ) = ∑ β i ( ∣ d i ( − 1 ) − d i ( 1 ) ∣ 2 ) \hat{a}(m_0,n_0)=\sum\beta_i(\frac{|d_i(-1)-d_i(1)|}{2})a^(m0,n0)=βi(2di(1)di(1))

最后,校正数据修正,满足以下条件校正,否则保留原始缺陷值,防止高频区“修坏”

a ( m 0 , n 0 ) = a ^ ( m 0 , n 0 ) , i f ∣ a ^ ( m 0 , n 0 ) − a ( m 0 , n 0 ) ∣ < e C + t C a(m_0,n_0)=\hat{a}(m_0,n_0),if|\hat{a}(m_0,n_0)-{a}(m_0,n_0)|<eC+tCa(m0,n0)=a^(m0,n0),ifa^(m0,n0)a(m0,n0)<eC+tC

e是工厂标定最大偏差,t是 混叠容限

5、处理效果


我的个人博客主页,欢迎访问

我的CSDN主页,欢迎访问

我的GitHub主页,欢迎访问

我的知乎主页,欢迎访问

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/1/15 1:29:10

【随笔】十年之约,不止约定十年

1、何为“十年之约” 十年之约是一个个人博客收录网站&#xff0c;其slogan是** 一个人的寂寞&#xff0c;一群人的狂欢。** 『十年之约』是由『十年之约』项目组维护的非营利性、面向个人独立博客自愿加入的博客活动。希望通过『十年之约』能锻炼您的写作能力&#xff0c;进而…

作者头像 李华
网站建设 2026/1/12 3:38:18

mptools v8.0配置文件解析:系统学习与实践应用

深入理解 mptools v8.0 配置系统&#xff1a;从结构到实战的完整指南在现代工程实践中&#xff0c;自动化运维工具早已不再是“可有可无”的附加组件&#xff0c;而是支撑高效交付、稳定运行的核心基础设施。面对日益复杂的部署环境和多变的操作需求&#xff0c;如何通过一份配…

作者头像 李华
网站建设 2026/1/16 7:34:21

ResNet18应用案例:农业病虫害识别系统

ResNet18应用案例&#xff1a;农业病虫害识别系统 1. 引言&#xff1a;从通用物体识别到农业场景落地 在人工智能赋能千行百业的今天&#xff0c;深度学习模型正逐步从实验室走向田间地头。ResNet18作为经典的轻量级卷积神经网络&#xff0c;在ImageNet等大规模数据集上展现了…

作者头像 李华
网站建设 2026/1/13 7:33:58

有源蜂鸣器PWM调音控制:超详细版实现指南

用PWM玩转有源蜂鸣器&#xff1a;不只是“滴”一声那么简单你有没有遇到过这样的场景&#xff1f;按下设备按键&#xff0c;只听到千篇一律的“滴”声&#xff1b;报警触发时&#xff0c;声音单调得像老式电话忙音——毫无辨识度。在今天这个追求极致交互体验的时代&#xff0c…

作者头像 李华
网站建设 2026/1/12 3:34:26

RISC为何高效?以ARM为例核心要点

RISC为何高效&#xff1f;从ARM的设计哲学看现代处理器的能效革命你有没有想过&#xff0c;为什么你的手机可以连续播放十几个小时视频而不发烫&#xff0c;而一台高性能笔记本在跑大型软件时却风扇狂转、掌心滚烫&#xff1f;这背后的核心差异&#xff0c;并不完全在于电池大小…

作者头像 李华
网站建设 2026/1/12 3:32:26

ResNet18优化实战:模型量化压缩技巧

ResNet18优化实战&#xff1a;模型量化压缩技巧 1. 背景与挑战&#xff1a;通用物体识别中的效率瓶颈 在当前AI应用广泛落地的背景下&#xff0c;通用物体识别已成为智能设备、边缘计算和Web服务的核心能力之一。基于ImageNet预训练的ResNet-18模型因其结构简洁、精度适中、参…

作者头像 李华