news 2026/1/19 7:25:06

数据科学实战:Ubuntu+Miniconda环境搭建全指南

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
数据科学实战:Ubuntu+Miniconda环境搭建全指南

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
创建一个完整的Ubuntu Miniconda数据科学环境配置指南,包含以下内容:1.Miniconda安装步骤 2.创建data_science环境 3.安装numpy,pandas,matplotlib,scikit-learn等基础包 4.配置Jupyter Notebook 5.设置内核 6.VSCode集成 7.环境导出与共享。要求生成Markdown格式文档,包含详细命令和解释,适合数据科学初学者。
  1. 点击'项目生成'按钮,等待项目生成完整后预览效果

今天想和大家分享一下在Ubuntu系统上搭建数据科学开发环境的完整流程。作为一个经常需要处理数据分析任务的人,我发现Miniconda是管理Python环境最方便的工具之一,特别适合需要频繁切换不同项目环境的数据科学工作者。

  1. Miniconda安装准备

首先需要下载Miniconda安装包。我推荐使用最新的Python 3.x版本,因为大多数数据科学库都已经完美支持Python 3。可以通过wget命令直接从官网下载Linux版本的安装脚本。下载完成后,记得用sha256sum命令校验一下文件完整性,这是个好习惯。

  1. 执行安装过程

安装过程其实很简单,运行下载的.sh脚本文件,按照提示操作即可。我建议安装时选择"yes"来初始化conda,这样每次打开终端时conda环境就会自动激活。安装完成后,可以通过"conda --version"命令来验证是否安装成功。

  1. 创建专用环境

我强烈建议为数据科学项目创建独立的环境,而不是使用base环境。这样可以避免不同项目间的包版本冲突。使用"conda create"命令创建一个名为data_science的新环境,并指定Python版本。创建完成后,记得激活这个环境再进行后续操作。

  1. 安装核心数据科学包

在激活的环境中,可以开始安装常用的数据科学包了。我通常会先安装numpy和pandas这两个基础包,然后是matplotlib用于可视化,scikit-learn用于机器学习。conda的一个优点是它能自动解决包依赖关系,比pip更省心。如果需要特定版本的包,也可以在安装时指定版本号。

  1. 配置Jupyter Notebook

Jupyter Notebook是数据科学家的标配工具。我们可以直接在conda环境中安装jupyter包。安装完成后,我建议生成一个配置文件,这样可以自定义Jupyter的行为。比如设置默认工作目录、启用扩展等。启动Jupyter时,使用"--no-browser"参数可以避免自动打开浏览器。

  1. 内核设置技巧

为了让Jupyter能够识别我们的conda环境,需要将环境注册为内核。这可以通过ipykernel包来实现。安装后,运行一个简单的命令就能将当前环境添加到Jupyter的内核列表中。这样在Notebook中就可以选择使用这个环境了。

  1. VSCode集成

如果你像我一样喜欢用VSCode写代码,可以很方便地将conda环境集成进去。在VSCode的设置中指定Python解释器路径,选择我们创建的data_science环境即可。VSCode的Python扩展还提供了很好的Jupyter Notebook支持,可以直接在编辑器里运行Notebook。

  1. 环境导出与共享

项目协作时,环境一致性很重要。conda可以很方便地导出环境配置,生成一个environment.yml文件。这个文件包含了所有已安装的包及其版本信息。队友拿到这个文件后,只需一条命令就能重建完全相同的环境,避免了"在我机器上能运行"的问题。

整个配置过程其实并不复杂,但确实需要一些耐心。我刚开始用conda时也踩过不少坑,比如环境冲突、包版本不兼容等。现在回想起来,遵循一些最佳实践可以避免很多问题:

  • 每个项目使用独立环境
  • 定期清理不再使用的环境
  • 在安装新包前先搜索可用版本
  • 导出环境配置文档

对于想快速体验数据科学环境的朋友,可以试试InsCode(快马)平台。它内置了Python环境和常用数据科学库,开箱即用,省去了繁琐的配置过程。特别是它的在线编辑器可以直接运行代码,对于快速验证想法特别方便。

希望这篇指南对你有帮助。数据科学的环境配置虽然只是第一步,但打好基础能让后续的工作事半功倍。如果遇到任何问题,欢迎在评论区交流讨论。

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
创建一个完整的Ubuntu Miniconda数据科学环境配置指南,包含以下内容:1.Miniconda安装步骤 2.创建data_science环境 3.安装numpy,pandas,matplotlib,scikit-learn等基础包 4.配置Jupyter Notebook 5.设置内核 6.VSCode集成 7.环境导出与共享。要求生成Markdown格式文档,包含详细命令和解释,适合数据科学初学者。
  1. 点击'项目生成'按钮,等待项目生成完整后预览效果
版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/1/16 15:14:58

AI人脸隐私卫士与GDPR合规性关系深度解析

AI人脸隐私卫士与GDPR合规性关系深度解析 1. 引言:AI驱动下的隐私保护新范式 随着人工智能技术在图像识别领域的广泛应用,人脸识别已渗透至安防、社交、零售等多个场景。然而,这种便利背后潜藏着巨大的隐私泄露风险。欧盟《通用数据保护条例…

作者头像 李华
网站建设 2026/1/16 14:06:19

HunyuanVideo-Foley内存管理:避免OOM的参数配置技巧

HunyuanVideo-Foley内存管理:避免OOM的参数配置技巧 1. 引言:视频音效生成中的内存挑战 1.1 HunyuanVideo-Foley 技术背景 HunyuanVideo-Foley 是腾讯混元于2025年8月28日宣布开源的一款端到端视频音效生成模型。该模型突破了传统音效制作依赖人工标注…

作者头像 李华
网站建设 2026/1/16 19:39:34

HTTP请求类型详解:从零理解multipart请求

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个交互式学习模块,通过可视化方式展示不同HTTP请求类型(POST, multipart, JSON等)的区别。包含可操作的示例:让用户修改虚拟请求头,实时看…

作者头像 李华
网站建设 2026/1/16 19:39:23

轻量级骨骼检测模型对比:树莓派也能跑,云端加速10倍

轻量级骨骼检测模型对比:树莓派也能跑,云端加速10倍 引言:为什么需要轻量级骨骼检测模型? 骨骼检测(又称人体关键点检测)是计算机视觉中的基础技术,它能从图像或视频中识别出人体的关节位置&a…

作者头像 李华
网站建设 2026/1/17 2:06:15

1小时用Vue3官方文档搭建管理后台原型

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 创建一个基于Vue3的管理后台原型生成器,用户可以通过勾选需要的功能模块(如表单、图表、权限等),自动生成可运行的代码原型。包含:1) 模块化组件…

作者头像 李华
网站建设 2026/1/16 17:01:40

零基础学会DEFINEMODEL:你的第一个数据模型

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 为初学者创建一个简单的博客系统模型:1. 用户模型(用户名、密码);2. 文章模型(标题、内容、作者、发布时间)…

作者头像 李华