news 2026/1/21 12:24:58

基于Spring Boot框架的农业生产设备销售服务平台的设计与实现

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
基于Spring Boot框架的农业生产设备销售服务平台的设计与实现

目录

      • 摘要
    • 开发技术
  • 核心代码参考示例
    • 1.建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】
    • 2.计算目标用户与其他用户的相似度
    • 总结
    • 源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

摘要

随着农业现代化进程的加快,农业生产设备的智能化、信息化需求日益增长。传统设备销售模式存在信息不对称、交易效率低、售后服务不完善等问题。基于Spring Boot框架的农业生产设备销售服务平台,旨在构建一个高效、便捷、智能化的在线交易与管理系统,优化农业设备流通环节。

平台采用B/S架构,后端基于Spring Boot框架开发,结合Spring Security实现权限控制,使用MyBatis-Plus进行数据持久化操作。前端采用Vue.js实现动态交互,通过RESTful API与后端通信。系统模块包括用户管理、设备分类与展示、购物车与订单管理、支付集成、售后服务及数据分析等,支持多角色(农户、经销商、管理员)协同操作。

平台创新点在于引入智能推荐算法,根据用户历史行为推荐适配设备;集成第三方支付与物流接口,实现交易闭环;利用大数据分析设备销售趋势,辅助决策。测试结果表明,系统运行稳定,响应速度快,能够有效提升农业设备交易的透明度和效率,为农业现代化提供技术支撑。

关键词:Spring Boot;农业生产设备;电子商务;智能推荐;数据分析


开发技术

系统决定采用Vue.js作为前端框架,因其易用、灵活且支持组件化开发,适合快速开发动态交互的Web应用。Vue.js的生态系统丰富,社区支持强大,可以有效地加速开发进程和提高前端开发效率。经过评估,Vue.js完全满足系统对前端技术的需求。 研究如何通过Spring Boot实现系统的快速开发和部署,利用Vue构建动态的前端页面,以及如何通过MySQL进行高效的数据管理和查询。系统后端选择Spring Boot框架,该框架基于Java,支持快速开发、微服务架构,且易于部署。Spring Boot广泛应用于企业级应用中,稳定性和性能都得到了验证。结合MyBatis作为持久层框架,可以简化数据库操作,提高数据处理效率。这套技术栈既符合现代Web应用开发的趋势,也满足了系统对后端技术的要求。
后端语言框架支持:
1 java(SSM/springboot)-idea/eclipse
2.Nodejs+Vue.js -vscode
3.python(flask/django)–pycharm/vscode
4.php(thinkphp/laravel)-hbuilderx
前端开发框架:vue.js
数据库 mysql 版本不限
JDK版本不限,最低jdk1.8
技术栈:JAVA+Mysql+Springboot+Vue+Maven
数据库工具:Navicat/SQLyog都可以
数据库:mysql (版本不限)

核心代码参考示例

1.建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】

协同过滤算法代码如下(示例):

/** * 协同过滤算法 */publicUserBasedCollaborativeFiltering(Map<String,Map<String,Double>>userRatings){this.userRatings=userRatings;this.itemUsers=newHashMap<>();this.userIndex=newHashMap<>();//辅助存储每一个用户的用户索引index映射:user->indexthis.indexUser=newHashMap<>();//辅助存储每一个索引index对应的用户映射:index->user// 构建物品-用户倒排表intkeyIndex=0;for(Stringuser:userRatings.keySet()){Map<String,Double>ratings=userRatings.get(user);for(Stringitem:ratings.keySet()){if(!itemUsers.containsKey(item)){itemUsers.put(item,newArrayList<>());}itemUsers.get(item).add(user);}//用户ID与稀疏矩阵建立对应关系this.userIndex.put(user,keyIndex);this.indexUser.put(keyIndex,user);keyIndex++;}intN=userRatings.size();this.sparseMatrix=newLong[N][N];//建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】for(inti=0;i<N;i++){for(intj=0;j<N;j++)this.sparseMatrix[i][j]=(long)0;}for(Stringitem:itemUsers.keySet()){List<String>userList=itemUsers.get(item);for(Stringu1:userList){for(Stringu2:userList){if(u1.equals(u2)){continue;}this.sparseMatrix[this.userIndex.get(u1)][this.userIndex.get(u2)]+=1;}}}}publicdoublecalculateSimilarity(Stringuser1,Stringuser2){//计算用户之间的相似度【余弦相似性】Integerid1=this.userIndex.get(user1);Integerid2=this.userIndex.get(user2);if(id1==null||id2==null)return0.0;returnthis.sparseMatrix[id1][id2]/Math.sqrt(userRatings.get(indexUser.get(id1)).size()*userRatings.get(indexUser.get(id2)).size());}

2.计算目标用户与其他用户的相似度

publicList<String>recommendItems(StringtargetUser,intnumRecommendations){// 计算目标用户与其他用户的相似度Map<String,Double>userSimilarities=newHashMap<>();for(Stringuser:userRatings.keySet()){if(!user.equals(targetUser)){doublesimilarity=calculateSimilarity(targetUser,user);userSimilarities.put(user,similarity);}}// 根据相似度进行排序List<Map.Entry<String,Double>>sortedSimilarities=newArrayList<>(userSimilarities.entrySet());sortedSimilarities.sort(Map.Entry.comparingByValue(Comparator.reverseOrder()));// 选择相似度最高的K个用户List<String>similarUsers=newArrayList<>();for(inti=0;i<numRecommendations;i++){if(i<sortedSimilarities.size()){similarUsers.add(sortedSimilarities.get(i).getKey());}else{break;}}// 获取相似用户喜欢的物品,并进行推荐Map<String,Double>recommendations=newHashMap<>();for(Stringuser:similarUsers){Map<String,Double>ratings=userRatings.get(user);for(Stringitem:ratings.keySet()){if(userRatings.get(targetUser)!=null&&!userRatings.get(targetUser).containsKey(item)){recommendations.put(item,ratings.get(item));}}}

总结

本次毕业设计主要围绕老师要求的设计与实现展开,通过综合运用现代信息技术,旨在解决传统管理系统中存在的流程冗杂、信息孤岛化、评审透明度不足等问题。在系统的设计与实现过程中,我们采用了SpringBoot框架和MySQL数据库等先进技术,实现了系统的前后端分离、模块化设计以及高效的数据处理与存储功能。
通过本次毕业设计,我成功构建了一个高效、安全、易用的毕业设计定系统。该系统不仅提高了传统的效率和透明度。同时,系统的无纸化操作也符合当前环保和可持续发展的理念。
然而,在系统的实际应用过程中,我也发现了一些待改进之处。例如,需要进一步完善以提高用户体验;系统的安全性也需要进一步加强,以确保用户信息的安全与隐私。此外,系统的界面设计也有待优化,以提升用户的使用感受。
本次毕业设计虽然取得了一定的成果,但仍存在许多需要改进和完善的地方。在未来的工作中,我将继续努力学习和探索,不断优化系统功能,提升系统性能,为今后的工作提供更加高效、便捷的服务。

源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,加我们的时候,不满意的可以定制
文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/1/10 23:14:11

地址匹配服务的成本优化:MGeo模型推理效率提升技巧

地址匹配服务的成本优化&#xff1a;MGeo模型推理效率提升技巧 为什么需要关注地址匹配服务的成本&#xff1f; 最近遇到不少创业团队反馈&#xff0c;他们的云上AI服务账单越来越惊人。特别是那些依赖地址匹配、POI查询等地理信息处理的服务&#xff0c;随着业务量增长&…

作者头像 李华
网站建设 2026/1/16 8:50:11

如何高效设计DC-DC电路:Buck-Boost电感计算完全攻略

如何高效设计DC-DC电路&#xff1a;Buck-Boost电感计算完全攻略 【免费下载链接】Buck-Boost-Inductor-Calculator 项目地址: https://gitcode.com/gh_mirrors/bu/Buck-Boost-Inductor-Calculator Buck-Boost电感计算是DC-DC转换器设计中的核心技术环节&#xff0c;合理…

作者头像 李华
网站建设 2026/1/9 21:55:32

高效地址标准化:基于MGeo的批量处理方案与云端部署

高效地址标准化&#xff1a;基于MGeo的批量处理方案与云端部署 银行风控部门经常需要处理数百万条客户地址数据&#xff0c;但本地服务器性能往往难以满足需求。本文将介绍如何利用MGeo多模态地理语言模型&#xff0c;在云端快速完成海量地址数据的标准化处理。这类任务通常需要…

作者头像 李华
网站建设 2026/1/12 6:10:24

Z-Image-Turbo Conda环境配置避坑指南

Z-Image-Turbo Conda环境配置避坑指南 阿里通义Z-Image-Turbo WebUI图像快速生成模型 二次开发构建by科哥 运行截图 引言&#xff1a;为什么需要一份Conda环境配置避坑指南&#xff1f; 阿里通义推出的 Z-Image-Turbo 是一款基于扩散模型的高性能AI图像生成工具&#xff0c;…

作者头像 李华
网站建设 2026/1/13 19:00:59

企业IT实战:批量解决员工电脑的并行配置错误

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 开发一个企业级批量修复工具&#xff0c;能够通过域控批量检测和修复网络中Windows电脑的并行配置错误。功能包括&#xff1a;远程扫描注册表、验证程序集版本、自动下载安装缺失的…

作者头像 李华
网站建设 2026/1/17 17:34:14

博图VS传统STEP7:开发效率对比实测

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 开发一个博图效率对比测试工具&#xff0c;功能包括&#xff1a;1.相同功能在STEP7和博图中的实现时间记录 2.代码复用率统计分析 3.仿真测试时间对比 4.故障诊断效率对比 5.生成可…

作者头像 李华