news 2026/1/22 4:51:19

LLMLingua提示压缩技术:如何在20倍加速下保持AI性能不变

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
LLMLingua提示压缩技术:如何在20倍加速下保持AI性能不变

LLMLingua提示压缩技术:如何在20倍加速下保持AI性能不变

【免费下载链接】LLMLinguaTo speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.项目地址: https://gitcode.com/gh_mirrors/ll/LLMLingua

您是否曾因ChatGPT提示长度限制而无法完成复杂任务?或者因为GPT-4 API高昂费用而犹豫不决?LLMLingua系列技术正是为解决这些痛点而生,通过创新的提示压缩方法,在显著降低成本和提升效率的同时,保持了出色的性能表现。

为什么提示压缩如此重要?

现代AI应用面临三大挑战:

长度限制:大多数语言模型对输入长度有严格限制,长文档分析、复杂推理等任务往往无法一次性完成

成本控制:GPT-3.5/4等API按令牌数计费,长提示意味着高额费用

性能瓶颈:过长的提示会拖慢推理速度,影响用户体验

核心技术:如何实现20倍压缩?

LLMLingua采用分层压缩架构,将2366个令牌压缩到仅117个令牌,压缩比达到惊人的20.2倍!其核心技术包括:

预算控制器:智能分配压缩资源,确保关键信息优先保留

分布对齐:保持压缩前后语义分布一致性

迭代令牌压缩:通过多轮精细处理,逐步优化压缩效果

实际性能表现:压缩后的效果如何?

在真实应用场景中,LLMLingua展现出了卓越的性能保持能力:

多文档问答:随着文档数量增加,传统方法性能急剧下降,而LLMLingua在仅使用1/4令牌的情况下,性能依然稳定

关键信息捕获:通过文档重排序技术,准确率稳定在75%以上,即使关键信息位于文档末尾

新一代技术:LLMLingua-2的突破

LLMLingua-2采用数据蒸馏技术,通过GPT-4生成压缩文本,然后训练BERT级编码器进行令牌分类

任务无关压缩:适用于各种应用场景,无需针对特定任务调整

3-6倍加速:相比前代技术,性能提升显著

如何快速上手使用?

安装过程极其简单:

pip install llmlingua

基本使用示例:

from llmlingua import PromptCompressor llm_lingua = PromptCompressor() compressed_prompt = llm_lingua.compress_prompt(prompt, target_token=200)

结构化提示压缩

对于复杂应用场景,LLMLingua支持细粒度的结构化压缩:

structured_prompt = """<llmlingua, compress=False>重要信息</llmlingua> <llmlingua, rate=0.4>可压缩内容</llmlingua>"""

实际应用场景效果

RAG检索增强生成

在RAG应用中,LLMLingua实现了:

21.4%性能提升:RAG系统整体表现更优

显著成本节省:仅需原始令牌数的1/4即可完成推理

效率优化:压缩过程几乎不增加额外开销

在线会议摘要

处理长会议记录时,LLMLingua能够:

保留关键发言:识别并保留重要讨论点和决策

去除冗余内容:过滤掉重复表达和非必要细节

与传统方法的对比优势

成本效益:传统方法按完整令牌数计费,而LLMLingua压缩后费用大幅降低

性能保持:相比传统压缩技术的信息丢失,LLMLingua关键信息保留完整

技术兼容性:无需额外训练大语言模型,支持多种框架集成

实用建议与最佳实践

  1. 分层压缩策略:对指令、问题等高敏感内容采用低压缩率,对上下文等低敏感内容采用高压缩率

  2. 关键信息保护:使用结构化压缩标记,确保重要信息不被压缩

  3. 参数调优:根据具体任务需求,调整压缩率和目标令牌数

  4. 质量控制:定期评估压缩效果,确保性能损失在可接受范围内

未来发展方向

LLMLingua技术仍在快速发展,未来将带来更多创新:

KV缓存压缩:进一步加速推理过程

多模态支持:扩展到图像、音频等场景

实时压缩:支持流式数据处理

结语

LLMLingua系列技术通过创新的提示压缩方法,在大幅降低成本和提升效率的同时,保持了出色的性能表现。无论您是AI应用开发者、企业技术负责人,还是对AI技术感兴趣的爱好者,这项技术都值得深入了解和尝试。

想要了解更多技术细节,可以参考项目中的官方文档和示例代码。

【免费下载链接】LLMLinguaTo speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.项目地址: https://gitcode.com/gh_mirrors/ll/LLMLingua

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/1/8 23:24:00

在GitHub Gist分享小型TensorFlow代码片段

在 GitHub Gist 分享小型 TensorFlow 代码片段 你有没有遇到过这样的情况&#xff1a;在论坛或技术群里看到一段看似简单的模型代码&#xff0c;兴冲冲地复制下来准备跑一跑&#xff0c;结果却卡在环境配置上——版本不兼容、依赖缺失、CUDA 报错……最后干脆放弃&#xff1f;这…

作者头像 李华
网站建设 2026/1/17 12:32:55

SDAT转IMG终极指南:快速完成系统镜像转换

SDAT转IMG终极指南&#xff1a;快速完成系统镜像转换 【免费下载链接】sdat2img Convert sparse Android data image to filesystem ext4 image 项目地址: https://gitcode.com/gh_mirrors/sd/sdat2img 你是否曾经在Android系统定制过程中遇到过SDAT格式的镜像文件&…

作者头像 李华
网站建设 2026/1/7 14:30:24

拥抱AI大模型,深耕空间智能,2025年终报告来了!

这是魔点科技的2025。跨山越海&#xff0c;步履不停让技术落地&#xff0c;让产品方案赋能干行百业也感谢每一位客户、伙伴、开发者的坚持、智慧与信任。2026&#xff0c;愿继续携手共赴未来

作者头像 李华
网站建设 2026/1/7 11:38:58

轻量级多模态AI的端侧部署革命:Qwen3-VL-4B技术深度解析

在AI技术快速演进的2025年&#xff0c;多模态大模型的部署成本已成为阻碍技术普惠的关键瓶颈。阿里巴巴通义千问团队推出的Qwen3-VL-4B-Instruct模型&#xff0c;以其仅40亿参数的紧凑架构&#xff0c;成功实现了工业级多模态能力在消费级硬件上的突破性部署&#xff0c;为边缘…

作者头像 李华
网站建设 2026/1/21 18:59:01

彻底清理!NI软件卸载工具一键解决残留问题 [特殊字符]

彻底清理&#xff01;NI软件卸载工具一键解决残留问题 &#x1f680; 【免费下载链接】NI软件NationalInstruments卸载工具 本资源提供了一款专门针对National Instruments软件套件的卸载工具。National Instruments的产品广泛应用于工程和科学领域&#xff0c;包括LabVIEW、DA…

作者头像 李华
网站建设 2026/1/7 1:33:59

2025年前端开发的就业现状如何?在变革浪潮

这是前端程序员在某红薯平台自述前端被裁的真实经历&#xff01; 2025开年&#xff0c;AI技术打得火热&#xff0c;正在改变前端人的职业命运&#xff1a; 阿里云核心业务全部接入Agent体系&#xff1b; 字节跳动30%前端岗位要求大模型开发能力&#xff1b; 腾讯、京东、百度开…

作者头像 李华