news 2026/2/2 14:25:10

springboot vue3高校就业数据分析信息管理系统[编号:CS_97217]

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
springboot vue3高校就业数据分析信息管理系统[编号:CS_97217]

目录

      • 项目概述
      • 技术架构
      • 核心功能
      • 创新点
      • 应用价值
    • 开发技术
  • 核心代码参考示例
    • 1.建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】
    • 2.计算目标用户与其他用户的相似度
    • 总结
    • 源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

项目概述

该项目基于SpringBoot和Vue3技术栈,开发了一套针对高校就业数据的管理与分析系统。系统聚焦于高校就业数据的采集、存储、可视化及决策支持,旨在为高校就业指导部门提供高效的数据管理工具和动态分析能力。

技术架构

后端采用SpringBoot框架,整合MyBatis-Plus实现数据持久化,通过RESTful API提供数据接口。前端基于Vue3+Element Plus构建交互界面,利用ECharts实现动态数据可视化。系统采用模块化设计,支持多角色权限控制,确保数据安全性。

核心功能

  1. 数据采集与管理:支持Excel批量导入就业数据,提供学生基本信息、就业单位、薪资水平等字段的增删改查功能。
  2. 多维分析:按专业、学历、行业等维度统计就业率、薪资分布,生成趋势图表。
  3. 智能预测:集成线性回归算法,基于历史数据预测未来就业趋势。
  4. 报表生成:自动生成PDF/Excel格式的年度就业质量报告。

创新点

  • 动态看板:自定义仪表盘,支持拖拽组件实时展示关键指标。
  • 校企联动:嵌入企业需求分析模块,辅助高校调整人才培养方案。
  • 移动端适配:响应式设计兼容PC与移动端访问。

应用价值

系统显著提升高校就业数据处理效率,降低人工统计误差,为招生计划制定、专业优化提供数据支撑,助力高校就业服务数字化转型。

(注:编号CS_97217为模拟项目标识,实际开发需结合具体需求调整功能模块。)





开发技术

系统决定采用Vue.js作为前端框架,因其易用、灵活且支持组件化开发,适合快速开发动态交互的Web应用。Vue.js的生态系统丰富,社区支持强大,可以有效地加速开发进程和提高前端开发效率。经过评估,Vue.js完全满足系统对前端技术的需求。 研究如何通过Spring Boot实现系统的快速开发和部署,利用Vue构建动态的前端页面,以及如何通过MySQL进行高效的数据管理和查询。系统后端选择Spring Boot框架,该框架基于Java,支持快速开发、微服务架构,且易于部署。Spring Boot广泛应用于企业级应用中,稳定性和性能都得到了验证。结合MyBatis作为持久层框架,可以简化数据库操作,提高数据处理效率。这套技术栈既符合现代Web应用开发的趋势,也满足了系统对后端技术的要求。
后端语言框架支持:
1 java(SSM/springboot)-idea/eclipse
2.Nodejs+Vue.js -vscode
3.python(flask/django)–pycharm/vscode
4.php(thinkphp/laravel)-hbuilderx
前端开发框架:vue.js
数据库 mysql 版本不限
JDK版本不限,最低jdk1.8
技术栈:JAVA+Mysql+Springboot+Vue+Maven
数据库工具:Navicat/SQLyog都可以
数据库:mysql (版本不限)

核心代码参考示例

1.建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】

协同过滤算法代码如下(示例):

/** * 协同过滤算法 */publicUserBasedCollaborativeFiltering(Map<String,Map<String,Double>>userRatings){this.userRatings=userRatings;this.itemUsers=newHashMap<>();this.userIndex=newHashMap<>();//辅助存储每一个用户的用户索引index映射:user->indexthis.indexUser=newHashMap<>();//辅助存储每一个索引index对应的用户映射:index->user// 构建物品-用户倒排表intkeyIndex=0;for(Stringuser:userRatings.keySet()){Map<String,Double>ratings=userRatings.get(user);for(Stringitem:ratings.keySet()){if(!itemUsers.containsKey(item)){itemUsers.put(item,newArrayList<>());}itemUsers.get(item).add(user);}//用户ID与稀疏矩阵建立对应关系this.userIndex.put(user,keyIndex);this.indexUser.put(keyIndex,user);keyIndex++;}intN=userRatings.size();this.sparseMatrix=newLong[N][N];//建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】for(inti=0;i<N;i++){for(intj=0;j<N;j++)this.sparseMatrix[i][j]=(long)0;}for(Stringitem:itemUsers.keySet()){List<String>userList=itemUsers.get(item);for(Stringu1:userList){for(Stringu2:userList){if(u1.equals(u2)){continue;}this.sparseMatrix[this.userIndex.get(u1)][this.userIndex.get(u2)]+=1;}}}}publicdoublecalculateSimilarity(Stringuser1,Stringuser2){//计算用户之间的相似度【余弦相似性】Integerid1=this.userIndex.get(user1);Integerid2=this.userIndex.get(user2);if(id1==null||id2==null)return0.0;returnthis.sparseMatrix[id1][id2]/Math.sqrt(userRatings.get(indexUser.get(id1)).size()*userRatings.get(indexUser.get(id2)).size());}

2.计算目标用户与其他用户的相似度

publicList<String>recommendItems(StringtargetUser,intnumRecommendations){// 计算目标用户与其他用户的相似度Map<String,Double>userSimilarities=newHashMap<>();for(Stringuser:userRatings.keySet()){if(!user.equals(targetUser)){doublesimilarity=calculateSimilarity(targetUser,user);userSimilarities.put(user,similarity);}}// 根据相似度进行排序List<Map.Entry<String,Double>>sortedSimilarities=newArrayList<>(userSimilarities.entrySet());sortedSimilarities.sort(Map.Entry.comparingByValue(Comparator.reverseOrder()));// 选择相似度最高的K个用户List<String>similarUsers=newArrayList<>();for(inti=0;i<numRecommendations;i++){if(i<sortedSimilarities.size()){similarUsers.add(sortedSimilarities.get(i).getKey());}else{break;}}// 获取相似用户喜欢的物品,并进行推荐Map<String,Double>recommendations=newHashMap<>();for(Stringuser:similarUsers){Map<String,Double>ratings=userRatings.get(user);for(Stringitem:ratings.keySet()){if(userRatings.get(targetUser)!=null&&!userRatings.get(targetUser).containsKey(item)){recommendations.put(item,ratings.get(item));}}}

总结

本次毕业设计主要围绕老师要求的设计与实现展开,通过综合运用现代信息技术,旨在解决传统管理系统中存在的流程冗杂、信息孤岛化、评审透明度不足等问题。在系统的设计与实现过程中,我们采用了SpringBoot框架和MySQL数据库等先进技术,实现了系统的前后端分离、模块化设计以及高效的数据处理与存储功能。
通过本次毕业设计,我成功构建了一个高效、安全、易用的毕业设计定系统。该系统不仅提高了传统的效率和透明度。同时,系统的无纸化操作也符合当前环保和可持续发展的理念。
然而,在系统的实际应用过程中,我也发现了一些待改进之处。例如,需要进一步完善以提高用户体验;系统的安全性也需要进一步加强,以确保用户信息的安全与隐私。此外,系统的界面设计也有待优化,以提升用户的使用感受。
本次毕业设计虽然取得了一定的成果,但仍存在许多需要改进和完善的地方。在未来的工作中,我将继续努力学习和探索,不断优化系统功能,提升系统性能,为今后的工作提供更加高效、便捷的服务。

源码文档获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,加我们的时候,不满意的可以定制
文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/1/30 19:25:37

Llama Factory黑科技:无需深度学习背景,小白也能玩转大模型

Llama Factory黑科技&#xff1a;无需深度学习背景&#xff0c;小白也能玩转大模型 作为一名对AI充满好奇的文科生&#xff0c;你是否曾被大语言模型的魅力所吸引&#xff0c;却又被复杂的机器学习概念吓退&#xff1f;别担心&#xff0c;Llama Factory正是为你量身打造的黑科…

作者头像 李华
网站建设 2026/1/29 9:26:38

教学实践:如何在计算机课堂中使用Llama Factory开展AI实验

教学实践&#xff1a;如何在计算机课堂中使用Llama Factory开展AI实验 作为一名大学讲师&#xff0c;我最近计划在下学期的机器学习课程中加入大模型实践环节。但面临一个现实问题&#xff1a;学生们的设备参差不齐&#xff0c;有的可能只有轻薄本&#xff0c;有的可能有高性能…

作者头像 李华
网站建设 2026/1/30 12:05:45

15分钟验证你的Kafka管理创意

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容&#xff1a; 构建一个可扩展的Kafka UI原型框架&#xff0c;包含&#xff1a;1) 插件式架构设计 2) 3种预置主题皮肤 3) 基础监控功能MVP 4) 扩展接口文档。要求生成完整的技术方案说明和架构图…

作者头像 李华
网站建设 2026/1/28 7:25:38

Llama Factory隐藏功能:让Qwen学会讲冷笑话

Llama Factory隐藏功能&#xff1a;让Qwen学会讲冷笑话 作为一名脱口秀编剧&#xff0c;我经常需要收集各种笑料素材来激发创作灵感。最近尝试用大模型生成幽默内容时&#xff0c;发现普通问答模式下的Qwen模型虽然知识丰富&#xff0c;但讲出来的笑话总差那么点意思——要么太…

作者头像 李华
网站建设 2026/1/30 23:42:23

某银行如何用CRNN OCR实现自动化票据识别,效率提升200%

某银行如何用CRNN OCR实现自动化票据识别&#xff0c;效率提升200% 引言&#xff1a;OCR技术在金融场景中的核心价值 在传统银行业务中&#xff0c;票据处理是高频且繁琐的环节。无论是对公业务中的发票、合同扫描件&#xff0c;还是个人信贷中的身份证、收入证明&#xff0c;大…

作者头像 李华
网站建设 2026/1/22 15:54:01

低成本试错:用Llama-Factory按小时租赁AI实验环境

低成本试错&#xff1a;用Llama-Factory按小时租赁AI实验环境 作为一名创业者&#xff0c;你可能经常需要验证各种AI创意方向&#xff0c;但长期租赁GPU的高昂成本让人望而却步。今天我要分享的是如何利用Llama-Factory这个开源工具&#xff0c;结合按小时计费的GPU环境&#…

作者头像 李华