news 2026/2/9 16:24:10

2026首发版,自学AI大模型的正确顺序:最新最全学习路线

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
2026首发版,自学AI大模型的正确顺序:最新最全学习路线

本文提供大模型学习的七个阶段完整路线图:从数学编程基础、机器学习、深度学习到自然语言处理、大规模语言模型(如Transformer、BERT、GPT)及其应用,最后为持续学习进阶。每个阶段都配有推荐书籍、课程和论文资源,并提供学习资料包帮助零基础小白系统掌握大模型技术,从理论到实战全面覆盖。


大模型学习路线图
第一阶段:基础知识准备

在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1. 数学基础

  • 线性代数:矩阵运算、向量空间、特征值与特征向量等。
  • 概率统计:随机变量、概率分布、贝叶斯定理等。
  • 微积分:梯度、偏导数、积分等。

学习资料

  • 书籍

    • Gilbert Strang,《线性代数及其应用》
    • Sheldon Ross,《概率论与随机过程》
  • 在线课程

    • Khan Academy 的线性代数和微积分课程
    • Coursera 上的 “Probability and Statistics for Business and Data Science”

2. 编程基础

  • Python:了解基本的数据结构、控制流以及函数式编程。
  • NumPy:掌握数组操作和数学函数。
  • Matplotlib:学会绘制图表。

学习资料

  • 书籍

    • Mark Lutz,《Learning Python》
  • 在线课程

    • Codecademy 的 Python 课程
    • Udacity 的 “Intro to Programming” 和 “Intro to NumPy”

第二阶段:机器学习基础

这一阶段主要涉及经典机器学习算法的学习,以及如何使用它们解决实际问题。
1. 机器学习理论

  • 监督学习:线性回归、逻辑回归、决策树、支持向量机、神经网络等。
  • 无监督学习:聚类算法、降维方法(PCA、t-SNE)等。
  • 评估指标:准确率、召回率、F1 分数等。

学习资料

  • 书籍

    • Christopher M. Bishop,《Pattern Recognition and Machine Learning》
    • Trevor Hastie, Robert Tibshirani, Jerome Friedman,《The Elements of Statistical Learning》
  • 在线课程

    • Andrew Ng 在 Coursera 上的 “Machine Learning” 课程
    • Udacity 的 “Intro to Machine Learning with PyTorch”

第三阶段:深度学习入门

在这个阶段,您将学习深度学习的基本概念和框架。

  1. 深度学习基础
  • 神经网络:前馈神经网络、卷积神经网络、循环神经网络等。
  • 训练技巧:反向传播、梯度下降、正则化等。

学习资料

  • 书籍

    • Ian Goodfellow, Yoshua Bengio, Aaron Courville,《Deep Learning》
  • 在线课程

    • deeplearning.ai 的 “Deep Learning Specialization”
    • fast.ai 的 “Practical Deep Learning for Coders”

2. 深度学习框架

  • PyTorch:动态计算图、自动微分等。
  • TensorFlow:静态计算图、Keras API 等。

学习资料

  • 书籍

    • Francois Chollet,《Deep Learning with Python》
  • 在线课程

    • Udacity 的 “Intro to Deep Learning with PyTorch”
    • TensorFlow 官方文档

第四阶段:自然语言处理基础

本阶段将介绍自然语言处理的基本概念和技术。
1. NLP 基础

  • 词嵌入:Word2Vec、GloVe 等。
  • 序列模型:RNN、LSTM、GRU 等。

学习资料

  • 书籍

    • Jurafsky & Martin,《Speech and Language Processing》
  • 在线课程

    • Coursera 的 “Natural Language Processing with Deep Learning”

第五阶段:大规模语言模型

这一阶段将重点学习大规模预训练模型。

  1. Transformer 架构
  • 自注意力机制:自我注意层、多头注意力等。
  • Transformer 模型:编码器、解码器等。

学习资料

  • 论文

    • Vaswani et al., “Attention Is All You Need”
  • 在线课程

    • Hugging Face 的 “Transformers: State-of-the-Art Natural Language Processing”

2. 预训练模型

  • BERT:双向编码器表示。
  • GPT:生成式预训练变换器。
  • T5:基于 Transformer 的文本到文本预训练模型。

学习资料

  • 论文

    • Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”
    • Radford et al., “Language Models are Unsupervised Multitask Learners”
    • Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”
  • 在线课程

    • Hugging Face 的 “State-of-the-Art Natural Language Processing”

第六阶段:大规模模型的应用

在这一阶段,您将学习如何将大规模模型应用于各种实际场景。
1. 应用实例

  • 文本生成:生成连贯的文章、诗歌等。
  • 对话系统:构建聊天机器人。
  • 机器翻译:实现高质量的自动翻译系统。

学习资料

  • 书籍

    • Alex Johnson,《Large-Scale Language Models: Theory and Applications》
  • 在线课程

    • Hugging Face 的 “Build Your Own AI Assistant”

第七阶段:持续学习与进阶

随着技术的发展,不断更新自己的知识库是非常重要的。

  1. 进阶主题
  • 多模态学习:结合视觉、听觉等多种信息源。
  • 模型优化:模型压缩、量化等。
  • 伦理和社会影响:AI 的公平性、隐私保护等。

学习资料

  • 论文

    • Liu et al., “Useful Knowledge for Language Modeling”
    • Zhang et al., “Understanding Deep Learning Requires Rethinking Generalization”
  • 在线课程

    • MIT 的 “6.S191 Deep Learning” 课程
    • Stanford 的 “CS224N: Natural Language Processing with Deep Learning”
结语

通过以上七个阶段的学习,您将能够建立起对大规模预训练模型的深刻理解,并掌握其在实际应用中的技巧。记得在学习过程中保持好奇心和探索精神,积极尝试新技术并参与社区讨论。希望这份学习路线图能帮助您成功踏上大规模模型的学习之旅!
如果您对某个特定阶段或主题有更详细的问题,欢迎随时提问!

如何系统的学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

01.大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

02.大模型 AI 学习和面试资料

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)





第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/2/3 5:13:50

AI智能宠物管家系统:基于YOLOv5的宠物识别与行为分析解决方案

文章目录 毕设帮扶:从0到1搭建基于YOLOv5的宠物检测系统——助你搞定深度学习毕设 一、课题价值:宠物检测毕设为啥值得做? 二、核心技术:YOLOv5在宠物检测中的“硬实力” 三、任务拆解:你的系统要解决哪些宠物检测问题? (一)核心任务 (二)场景挑战与应对 四、数据集:…

作者头像 李华
网站建设 2026/2/3 12:31:26

Bug侦破大会:破解技术悬案的终极策略

技术悬案:Bug侦破大会的挑战与策略主题引入 从软件开发的日常中选取典型Bug案例,以悬疑叙事方式吸引读者,强调复杂Bug对项目的潜在影响。案例背景设定选择具有代表性的技术场景(如分布式系统、内存泄漏、并发问题)&…

作者头像 李华
网站建设 2026/2/8 5:07:42

LLM基因定制饮食健康效果翻倍

📝 博客主页:Jax的CSDN主页 基因导向的智能饮食规划:健康效果倍增的科学路径目录基因导向的智能饮食规划:健康效果倍增的科学路径 目录 引言:基因定制饮食的瓶颈与破局点 技术应用场景:从预防到健康管理的全…

作者头像 李华
网站建设 2026/2/6 18:24:13

亲测好用8个AI论文网站,专科生搞定毕业论文格式规范!

亲测好用8个AI论文网站,专科生搞定毕业论文格式规范! AI 工具如何让论文写作变得轻松高效 对于许多专科生来说,毕业论文的撰写不仅是学术能力的考验,更是一场对耐心与技巧的挑战。尤其是在格式规范、内容逻辑和语言表达等方面&…

作者头像 李华
网站建设 2026/2/9 11:58:27

YOLO26创新改进 | 全网独家,注意力创新改进篇 | AAAI 2025 | 引入DTAB和GCSA创新点,通过重新设计通道和空间自注意力机制,助力YOLO26有效涨点

一、本文介绍 本文给大家介绍使用DTAB和GCSA创新点改进YOLO26模型!TBSN通过重新设计通道自注意力(分组通道注意力 G-CSA)来防止多尺度架构中的盲点信息泄露,并利用带掩膜的窗口自注意力 (M-WSA) 模仿扩张卷积以保持盲点特性,助力YOLO26有效涨点。 🔥欢迎订阅我的专栏、…

作者头像 李华
网站建设 2026/2/8 6:18:48

YOLO26涨点改进 | 全网独家复现,注意力创新改进篇 | ICCV 2025 | 引入MSA多尺度注意力,多尺度特征有助于全局感知和增强局部细节、助力小目标检测、遥感小目标检测、图像分割有效涨点

一、本文介绍 本文给大家介绍Multi-Scale Attention(MSA)多尺度注意力模块改进YOLO26。MSA 模块为 YOLO26 提供了更强的多尺度建模能力和显著的判别特征增强,提升了目标检测与异常检测的鲁棒性和精度,同时保持高效、轻量、可即插即用。具体怎么使用请看全文! 🔥欢迎订…

作者头像 李华