news 2026/2/12 8:22:58

Python+django的社区诊所居民电子病历管理系统_fm9032h6

作者头像

张小明

前端开发工程师

1.2k 24
文章封面图
Python+django的社区诊所居民电子病历管理系统_fm9032h6

目录

      • Python+Django 社区诊所居民电子病历管理系统摘要
    • 关于博主
    • 开发技术路线
    • 相关技术介绍
    • 核心代码参考示例
    • 结论
    • 源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

Python+Django 社区诊所居民电子病历管理系统摘要

该系统基于 Python 和 Django 框架开发,旨在为社区诊所提供高效、安全的电子病历管理解决方案。系统采用 B/S 架构,支持多用户角色管理,包括医生、护士、管理员和居民,确保数据访问的权限控制。

系统核心功能包括居民信息管理、病历记录、处方管理、预约挂号和数据分析模块。居民信息管理模块支持个人基本信息的录入、修改和查询,确保数据完整性。病历记录模块允许医生在线填写、更新和查看居民的健康档案,支持图文上传和历史记录追溯。

处方管理模块提供电子处方开具、审核和发放功能,并与药品库存系统联动,避免重复开药或药品短缺。预约挂号模块支持居民在线预约、取消和改期,优化诊所资源分配。数据分析模块利用 Django ORM 和可视化工具生成统计报表,辅助诊所决策。

系统采用 SQLite/MySQL 作为数据库,确保数据存储的稳定性和可扩展性。前端使用 Bootstrap 和 jQuery 实现响应式设计,适配 PC 和移动端。安全性方面,通过 Django 内置的 CSRF 防护、密码哈希和会话管理机制保障用户隐私。

该系统提升了社区诊所的工作效率,减少了纸质病历的依赖,同时符合医疗数据合规性要求,为居民提供便捷的健康管理服务。







关于博主

本人是专业技术服务,大家都要生活,这个很正常。我和其他人不同的是,我是源头供货商。大家都不容易,我理解同学们的经济压力。我的原则很简单:用最专业的技术、最实惠的价格、最真诚的态度服务大家。无论最终合作与否,咱们都是朋友,能帮的地方我绝不含糊。买卖不成仁义在,这就是我的做人原则。 团队专注于uniapp框架,Android,Kotlin框架,koa框架,express框架,go语言,laravel框架,thinkphp框架,springcloud,django,flask框架,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发 全网粉丝30W+,累计指导10w+项目,原创技术文章2万+篇,GitHub项目获赞50W+ 核心服务: 专业指导、项目源码开发、技术答疑解惑,用学生视角理解学生需求,提供最贴心的技术帮助。

开发技术路线

开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
前端开发框架:vue.js
数据库 mysql 版本不限
本系统后端语言框架支持: 1 java(SSM/springboot)-idea/eclipse 2.Nodejs+Vue.js -vscode 3.python(flask/django)--pycharm/vscode 4.php(thinkphp/laravel)-hbuilderx

相关技术介绍

Hadoop:Hadoop 是一个分布式计算平台,用于处理大规模数据。在酒店评论情感分析中,它负责存储和处理海量评论数据,支持并行计算,提升数据处理效率,为深度学习模型训练提供强大的数据支持。
决策树算法:决策树是一种经典的机器学习算法,用于情感分类。在酒店评论情感分析中,它通过构建树状模型,根据特征划分情感类别,简单易懂且可解释性强,适用于初步情感分类任务。
协同过滤:协同过滤是一种推荐系统技术,通过分析用户的历史行为和偏好,挖掘用户之间的相似性,为用户推荐可能感兴趣的酒店。在酒店评论情感分析系统中,协同过滤可用于结合情感分析结果,为用户精准推荐高满意度的酒店,提升用户体验和决策效率。

B/S架构(Browser/Server):B/S架构是一种网络体系结构,用户通过浏览器访问服务器上的应用程序。在本系统中,用户通过浏览器访问服务器上的Java Web应用程序。
LSTM算法:LSTM(长短期记忆网络)是一种深度学习算法,特别适合处理序列数据。在酒店评论情感分析中,LSTM能够捕捉文本中的长期依赖关系,精准识别情感倾向,有效提升情感分析的准确性和鲁棒性。
Django框架:Django是一个开放源代码的Web应用框架,采用MTV(Model-Template-View)设计模式。它鼓励快速开发和干净、实用的设计。在本系统中,我们选择Django框架来实现后端逻辑,主要因为它提供了许多自动化功能,如ORM(对象关系映射)、模板引擎、表单处理等。这些功能大大减轻了开发者的工作量,提高了开发效率。Django具有良好的扩展性和安全性,支持多种数据库后端,并且有完善的文档和社区支持。
Python语言:Python是一种广泛使用的高级编程语言,以其简洁易读的语法和强大的功能而闻名。Python拥有丰富的标准库和第三方库,可以满足各种开发需求。在本系统中,我们选择Python作为后端开发语言,主要考虑到其高效性和易用性。Python的动态类型检查和自动内存管理使得开发过程更加顺畅,减少了代码量和出错概率。Python社区活跃,有大量的开源项目和教程可以参考,有助于解决开发中遇到的问题。
MySQL:MySQL是一个广泛使用的开源关系型数据库管理系统,用于存储和管理数据。在本系统中,MySQL被用作数据库,负责存储系统的数据。
Scrapy:Scrapy 是一款高效的网络爬虫框架,用于爬取酒店评论数据。它能够快速定位目标网站,提取评论文本并保存为结构化数据,为情感分析提供丰富的原始素材,确保数据采集的高效性和准确性。
数据清洗:数据清洗是情感分析的重要环节,用于去除酒店评论中的噪声数据,如无关符号、重复内容等。通过清洗,确保输入模型的数据质量,从而提高情感分析的准确性和可靠性。
Vue.js:属于轻量级的前端JavaScript框架,它采用数据驱动的方式构建用户界面。Vue.js的核心库专注于视图层,易于学习和集成,提供了丰富的组件库和工具链,支持单文件组件和热模块替换,极大地提升了开发效率和用户体验。

核心代码参考示例

预测算法代码如下(示例):

defbooksinfoforecast_forecast():importdatetimeifrequest.methodin["POST","GET"]:#get、post请求msg={'code':normal_code,'message':'success'}#获取数据集req_dict=session.get("req_dict")connection=pymysql.connect(**mysql_config)query="SELECT author,type,status,wordcount, monthcount FROM booksinfo"#处理缺失值data=pd.read_sql(query,connection).dropna()id=req_dict.pop('id',None)req_dict.pop('addtime',None)df=to_forecast(data,req_dict,None)#创建数据库连接,将DataFrame 插入数据库connection_string=f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"engine=create_engine(connection_string)try:ifreq_dict:#遍历 DataFrame,并逐行更新数据库withengine.connect()asconnection:forindex,rowindf.iterrows():sql=""" INSERT INTO booksinfoforecast (id ,monthcount ) VALUES (%(id)s ,%(monthcount)s ) ON DUPLICATE KEY UPDATE monthcount = VALUES(monthcount) """connection.execute(sql,{'id':id,'monthcount':row['monthcount']})else:df.to_sql('booksinfoforecast',con=engine,if_exists='append',index=False)print("数据更新成功!")exceptExceptionase:print(f"发生错误:{e}")finally:engine.dispose()# 关闭数据库连接returnjsonify(msg)

结论

本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架,同行可拿货,招校园代理
大数据指的就是尽可能的把信息收集统计起来进行分析,来分析你的行为和你周边的人的行为。大数据的核心价值在于存储和分析海量数据,大数据技术的战略意义不在于掌握大量数据信息,而在于专业处理这些有意义的数据。看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了, 数据获取方法
数据集来源外卖推荐的相关数据,通过python中的xpath获取html中的数据。
数据预处理设计 对于爬取数据量不大的内容可以使用CSV库来存储数据,将其存为CSV文件格式,再对数据进行数据预处理,也可通过代码进行数据预处理。
(1)数据获取板块
数据获取板块功能主要是依据分析目的及要达到的目标,确定获取的数据种类,并使用直接获取数据文件方式或爬虫方式获取原始数据。
(2)数据预处理板块
数据预处理板块功能是对获取到的数据进行预处理操作:将重复的字段筛选,将过短并且没有实际意义的数据进行过滤,选择重要字段,标准化处理,异常值处理等预处理操作。
(3)数据存储板块
数据存储板块主要功能是把经过预处理的数据持久化存储,以便于后续分析。
(4)数据分析板块
数据分析板块主要功能是根据分析目标,找出数据中字段之间的内在关系,与规律。
(5)数据可视化板块
数据可视化板块主要功能是使用适当的图标展现方式,把数据的内在关系、规律展现出来。

源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!

需要成品或者定制,文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试,不满意的可以定制

版权声明: 本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!
网站建设 2026/2/12 0:30:07

自动化测试:为万物识别模型构建持续集成流水线

自动化测试:为万物识别模型构建持续集成流水线 作为一名AI团队的负责人,你是否也遇到过这样的困扰:每次模型更新都需要手动配置测试环境,从依赖安装到数据准备,再到测试脚本调试,整个过程耗时耗力&#xff…

作者头像 李华
网站建设 2026/2/10 8:39:00

万物识别+:如何扩展预训练模型到特定领域

万物识别:如何扩展预训练模型到特定领域 作为一名工业质检工程师,你可能已经发现通用的物体识别模型在实际应用中表现不佳,尤其是面对特定零件时。本文将手把手教你如何利用预训练模型进行领域适配,即使计算资源有限也能实现精准…

作者头像 李华
网站建设 2026/2/3 5:41:58

ms-swift支持增量预训练持续注入新领域知识

ms-swift:如何让大模型持续“学习”新知识? 在企业级AI应用的战场上,一个现实问题始终困扰着工程师们:我们手里的大模型明明很强,但为什么一碰到专业领域就“露怯”? 比如,你拿 Qwen3-7B 去回答…

作者头像 李华
网站建设 2026/2/10 17:44:52

终极指南:如何用云端GPU快速部署中文通用识别模型

终极指南:如何用云端GPU快速部署中文通用识别模型 作为一名IT运维人员,突然被要求部署一个物体识别服务,却对AI领域完全陌生?别担心,本文将手把手教你如何通过云端GPU环境快速部署中文通用识别模型,无需深入…

作者头像 李华
网站建设 2026/2/10 16:39:15

ServiceNow服务请求过滤:Qwen3Guard-Gen-8B防止滥用提交

ServiceNow服务请求过滤:Qwen3Guard-Gen-8B防止滥用提交 在企业数字化转型加速的今天,IT服务管理(ITSM)平台如ServiceNow已成为支撑全球组织运营的核心系统。随着用户交互量的激增和AI能力的深度集成,一个隐性但日益严…

作者头像 李华
网站建设 2026/2/10 17:01:35

DeepSeek-VL2多模态推理实测:ms-swift框架下的性能表现

DeepSeek-VL2多模态推理实测:ms-swift框架下的性能表现 在智能系统日益依赖视觉理解能力的今天,一个能准确“看懂”图像并给出语义化回应的模型,正成为企业构建AI应用的核心组件。从发票识别到教育阅卷,从商品比价到医疗影像分析&…

作者头像 李华