GLM-4.7-Flash实战教程:用FastAPI封装异步流式响应API服务
1. 引言
GLM-4.7-Flash是智谱AI推出的新一代大语言模型,采用先进的MoE混合专家架构,总参数量达300亿。作为一款专为推理速度优化的模型,它在中文理解和生成任务上表现出色,特别适合需要快速响应的应用场景。
本教程将带你从零开始,使用FastAPI框架为GLM-4.7-Flash模型封装一个支持异步流式响应的API服务。通过本教程,你将学会:
- 如何搭建FastAPI服务框架
- 如何集成GLM-4.7-Flash模型
- 如何实现流式响应功能
- 如何优化API性能
2. 环境准备
2.1 硬件要求
- GPU: 推荐NVIDIA RTX 4090或更高性能显卡
- 显存: 至少24GB
- 内存: 64GB以上
- 存储: 100GB可用空间
2.2 软件依赖
pip install fastapi uvicorn httpx python-dotenv pip install "pydantic>=2.0" pip install "vllm>=0.3.0"2.3 模型准备
确保GLM-4.7-Flash模型已下载并放置在正确路径:
/root/.cache/huggingface/ZhipuAI/GLM-4.7-Flash3. 基础API服务搭建
3.1 创建FastAPI应用
新建main.py文件,添加基础框架:
from fastapi import FastAPI, Request from fastapi.responses import StreamingResponse import uvicorn app = FastAPI( title="GLM-4.7-Flash API", description="异步流式API服务", version="0.1.0" ) @app.get("/") async def health_check(): return {"status": "healthy"} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)3.2 启动测试服务
python main.py访问http://localhost:8000,应该能看到健康检查响应。
4. 集成GLM-4.7-Flash模型
4.1 初始化vLLM引擎
在main.py中添加模型初始化代码:
from vllm import AsyncLLMEngine from vllm.engine.arg_utils import AsyncEngineArgs engine_args = AsyncEngineArgs( model="/root/.cache/huggingface/ZhipuAI/GLM-4.7-Flash", tensor_parallel_size=4, max_model_len=4096, gpu_memory_utilization=0.85 ) engine = AsyncLLMEngine.from_engine_args(engine_args)4.2 创建请求和响应模型
添加Pydantic模型定义:
from pydantic import BaseModel from typing import List, Optional class Message(BaseModel): role: str content: str class ChatRequest(BaseModel): messages: List[Message] temperature: Optional[float] = 0.7 max_tokens: Optional[int] = 2048 stream: Optional[bool] = False5. 实现流式响应API
5.1 核心流式处理函数
async def chat_completion_stream(request: ChatRequest): from vllm.sampling_params import SamplingParams sampling_params = SamplingParams( temperature=request.temperature, max_tokens=request.max_tokens ) prompt = "" for message in request.messages: prompt += f"{message.role}: {message.content}\n" prompt += "assistant: " results_generator = engine.generate(prompt, sampling_params, request.id) async for output in results_generator: if request.stream: yield f"data: {output.text}\n\n" else: yield output.text if request.stream: yield "data: [DONE]\n\n"5.2 完整API端点
@app.post("/v1/chat/completions") async def chat_completions(request: ChatRequest): if request.stream: return StreamingResponse( chat_completion_stream(request), media_type="text/event-stream" ) else: full_response = "" async for chunk in chat_completion_stream(request): full_response += chunk return {"response": full_response}6. 性能优化与部署
6.1 启用响应压缩
修改FastAPI初始化:
app = FastAPI( title="GLM-4.7-Flash API", description="异步流式API服务", version="0.1.0", middleware=[ Middleware(GZipMiddleware, minimum_size=1000) ] )6.2 生产环境部署
使用Gunicorn+Uvicorn多进程部署:
gunicorn -w 4 -k uvicorn.workers.UvicornWorker main:app --bind 0.0.0.0:80006.3 监控与日志
添加Prometheus监控:
from fastapi import Response from prometheus_client import generate_latest, CONTENT_TYPE_LATEST @app.get("/metrics") async def metrics(): return Response( content=generate_latest(), media_type=CONTENT_TYPE_LATEST )7. 总结
通过本教程,我们完成了以下工作:
- 搭建了基于FastAPI的Web服务框架
- 集成了GLM-4.7-Flash模型和vLLM推理引擎
- 实现了支持流式和非流式两种响应模式
- 添加了生产环境部署和监控方案
现在你可以通过以下方式调用API:
import httpx async with httpx.AsyncClient() as client: response = await client.post( "http://localhost:8000/v1/chat/completions", json={ "messages": [{"role": "user", "content": "你好"}], "stream": True } ) async for chunk in response.aiter_text(): print(chunk)获取更多AI镜像
想探索更多AI镜像和应用场景?访问 CSDN星图镜像广场,提供丰富的预置镜像,覆盖大模型推理、图像生成、视频生成、模型微调等多个领域,支持一键部署。